157 resultados para threshold detector
Resumo:
A specially designed quantum well laser for achieving extremely low vertical beam divergence was reported and theoretically investigated. The laser structure was characterized by two low index layers inserted between the waveguide layers and the cladding layers. The additional layers were intended to achieve wide optical spread in the cladding layers and strong confinement in the active region. This enabled significant reduction of beam divergence with no sacrifice in threshold current density. The numerical results showed that lasers with extremely low vertical beam divergence from 20 degrees down to 11 degrees and threshold current density of less than 131 A/cm(2) can be easily achieved by optimization of the structure parameters. Influences of individual key structure parameters on beam divergence and threshold current density are analyzed. Attention is also paid to the minimum cladding layer thicknesses needed to maintain low threshold current densities and low internal loss. The near and far field patterns are given and discussed. (C) 1998 American Institute of Physics.
Resumo:
A seven-state phase frequency detector (S.S PFD) is proposed for fast-locking charge pump based phase-locked loops (CPPLLs) in this paper. The locking time of the PLL can be significantly reduced by using the seven-state PFD to inject more current into the loop filter. In this stage, the bandwidth of the PLL is increased or decreased to track the phase difference of the reference signal and the feedback signal. The proposed architecture is realized in a standard 0.35 mu m 2P4M CMOS process with a 3.3V supply voltage. The locking time of the proposed PLL is 1.102 mu s compared with the 2.347 mu s of the PLL based on continuous-time PFD and the 3.298 mu s of the PLL based on the pass-transistor tri-state PFD. There are 53.05% and 66.59% reductions of the locking time. The simulation results and the comparison with other PLLs demonstrate that the proposed seven-state PFD is effective to reduce locking time.
Resumo:
A 1GHz monolithic photo-detector (PD) and trans-impedance amplifier (TIA) is designed with the standard 0.35 mu m CMOS technique. The design of the photo-detector is analyzed and the CMOS trans-impedance amplifier is also analyzed in the paper. The integrating method is described too. The die photograph is also showed in the paper.
Resumo:
The high quality Ge islands material with 1.55 mu m photo-response grown on Sol substrate is reported. Due to the modulation of the cavity formed by the mirrors at the surface and the buried SiO2 interface, seven sharp and strong peaks with narrow linewidth are found. And a 1.55 mu m Ge islands resonant-cavity-enhanced (RCE) detector with narrowband was fabricated by a simple method. The bottom mirror was deposited in the hole formed by anisotropically etching, in a basic solution from the backside of the sample with the buried SiO2 layer in silicon-on-insulator substrate as the etch-stop layer. Reflectivity spectrum indicates that the mirror deposited in the hole has a reflectivity as high as 99% in the range of 1.2-1.65 mu m. The peak responsivity of the RCE detector at 1543.8 nm is 0.028 mA/W and a full width at half maximum of 5 nm is obtained. Compared with the conventional p-i-n photodetector, the responsivity of RCE detector has a nearly threefold enhancement.
Resumo:
In this paper, a low-complexity soft-output QRD-M detection algorithm is proposed for high-throughput Multiple-input multiple-output (MIMO) systems. By employing novel expansion on demand and distributed sorting scheme, the proposed algorithm can reduce 70% and 85% foundational operations for 16-QAM and 64-QAM respectively compared to the conventional QRD-M algorithm. Furthermore, the proposed algorithm can yield soft information to improve the bit error rate (BER) performance. Simulation results show that the proposed algorithm can achieve a near-NIL detection performance with less foundational operations
Resumo:
We present the fabrication process and experimental results of 850-nm oxide-confined vertical cavity surface emitting lasers (VCSELs) fabricated by using dielectric-free approach. The threshold current of 0.4 mA, which corresponds to the threshold current density of 0.5 kA/cm(2), differential resistance of 76 Omega, and maximum output power of more than 5 mW are achieved for the dielectric-free VCSEL with a square oxide aperture size of 9 mu m at room temperature (RT). L-I-V characteristics of the dielectric-free VCSEL are compared with those of conventional VCSEL with the similar aperture size, which indicates the way to realize low-cost, low-power consumption VCSELs with extremely simple process. Preliminary study of the temperature-dependent L-I characteristics and modulation response of the dielectric-free VCSEL are also presented.
Resumo:
A low-threshold passively continuous-wave (CW) mode-locked Nd:YVO4 solid-state laser was demonstrated by use of a semiconductor saturable absorber mirror (SESAM). The threshold for continuous-wave mode-locked is relatively low, about 2.15 W. The maximum average output power was 2.12 W and the optical to optical conversion efficiency was about 32%. The pulse width was about 15 ps with the repetition rate of 105 MHz. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8 x 10(-4). A clear narrow band detection spectrum centered at 4.5 mu m has been observed above room temperature for a device with 200 x 200 mu m(2) square mesa.
Resumo:
IEEE Computer Society
Resumo:
C-axis preferred oriented ZnO thin films were prepared on quartz substrates by RF sputtering. Photoconductive ultraviolet detector with planar interdigital electrodes was fabricated on ZnO thin film by the lift off technique. Linear I-V characteristic was observed under dark or 365 nm UV light illumination and has obvious difference. The photoresponsivity of 365 nm at 5 V bias is 18 A/W. The response time measure set mainly contains KrF excimer laser with the pulse width of 30 ns and the oscillograph with the bandwidth of 200 MHz. The result shows fast photoresponse with a rise time of 100 ns and fall time of 1.5 mu s. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The near-threshold highly bound states of all three stable isotopic variants of molecular hydrogen have been studied. Numerous perturbations and unexpected transitions are observed as far as 1cm(-1) just below the second dissociation threshold. This complex structure may arise from a combination of nonadiabatic coupling between B, B', C electronic states, perturbations due to. ne and hyperfine interactions, and strong shape resonances. The perturbed near-threshold states and vibrational continuum exhibit finegrained structure, differing greatly between isotopes because of varying nonadiabatic coupling.
Resumo:
National Natural Science Foundationa of China(602537060,60408002)