115 resultados para cascade failure
Resumo:
We demonstrate the fabrication and characterization of photonic-crystal distributed-feedback quantum cascade laser emitting at 4.7 mu m. The tilted rectangular-lattice PCDFB structure was defined using a multi-exposure of two-beam holographic lithography. The devices exhibit the near-diffraction-limited beam emission with the full width at half maximum of the far-field divergence angles about 4.5 degrees and 2.5 degrees for stripe widths of 55 mu m and 95 mu m, respectively. Single-mode emission with a side mode suppression ratio of approximate to 20 dB is achieved in the temperature range (80-210 K). The single-facet output power is above 1 W for a 95 mu m x 2.5 mm laser bar at 85 K in pulsed operation. (C) 2009 Optical Society of America
Resumo:
Quasi-continuous-wave operation of AlGaAs/GaAs-based quantum cascade lasers (lambda similar to 9 mu m) up to 165 K is reported. The strong temperature dependence of the threshold current density and its higher value in high duty cycle is investigated in detail. The self-heating effect in the active region is explored by changing the operating duty cycles. The degradation of lasing performance with temperature is explained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report on the material growth and device performance characterization of a strain-compensated In0.54Ga0.46As/In0.51Al0.49As quantum cascade laser at lambda similar to 8 mu m. For 2 mu s pulse at a 5 kHz repetition rate, laser action is achieved up to room temperature (30 degrees C). The tuning coefficient d lambda/dT is 1.37 nm K-1 between 83 K and 163 K and 0.60 nm K-1 in the range from 183 K to 303 K. The peak output power is reported to be similar to 11.3 mW per facet at 293 K and the corresponding threshold current density is 5.69 kA cm(-2).
Resumo:
The route to grow InP-based heteroepitaxial structure for quantum cascade laser by molecular beam epitaxy is reported. Optimized growth conditions including substrate temperature, V/III ratio, growth rates, doping levels and interface control are summarized. Double crystal Xray diffraction and cross-sectional transmission electron microscopy disclose that our grown InP-based heteroepitaxial structure for quantum cascade laser has excellent periodicity and sharp interfaces. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper introduces in detail the working principle of Si/SiGe Quantum cascade laser(QCL). Appropriate parameters are used to calculate the hole subband structure of Si/Si1-xGex quantum well using a six-band k center dot p method. The dispersion relation and energy band for different layer thickness and compositions are investigated. Meanwhile, the energy separations between hole subbands in Si/Si1-xGex/Si quantum wells are also analyzed. Finally the calculated results are used for the Si/SiGe QCL design, which will be beneficial to the structure optimization of Si/SiGe QCL.
Resumo:
We report low-threshold high-temperature operation of 7.4 mu m strain-compensated InGaAs/InAlAs quantum cascade lasers (QCLs). For an uncoated 22-mu m-wide and 2-mm-long laser, the low-threshold current densities, i.e. 0.33 kA/cm(2) at 81 K in pulsed mode and 0.64 kA/cm(2) at 84 K in cw mode, are realized. High-temperature operation of uncoated devices, with a high value of 223 K, is achieved in cw mode.
Resumo:
We report the low threshold current density operation of strain-compensated In0.64Ga0.36As/In0.38Al0.62As quantum cascade lasers emitting near 4.94 mu m. By employing an enlarged strain-compensated structure and optimizing the injector doping density, a rather low threshold current density of 0.57 kA/cm(2) at 80K is achieved for an uncoated 20-mu m-wide and 2.5-mm-long laser.
Resumo:
National Research Projects of China 60525406 60736031 60806018 60906026 2006CB604903 2007AA03Z446 2009AA03Z403
Resumo:
National High Technology Research and Development Program of China 2007AA03Z112;Program of Ministry of Education of China 20060183030;Program of Jilin Provincial Science and Technology Department of China 20070709;Program of Bureau of Science and Technology of Changchun City 2007107
Resumo:
We present a detailed study of lambda similar to 9.75 mu m GaAs/AIGaAs quantum cascade lasers. For a coated 2-mm-long and 40-mu m-wide laser, an optical power of 85 mu W is observed 95% duty cycle at 80 K. At a moderate driving pulse (1 kHz and 1% duty cycle), the device presents a peak power more than 20 mW even at 120 K. At 80 K, the fitted result of threshold current densities shows evidence of potential cw operation.
Resumo:
We report on the realization of GaAs/AlGaAs quantum cascade lasers with an emission wavelength of 9.1 mu m above the liquid nitrogen temperature. With optimal current injection window and ridge width of 24 and 60 mu m respectively, a peak output power more than 500 mW is achieved in pulsed mode operation. A low threshold current density J(th) = 2.6 kA/cm(2) gives the devices good lasing characteristics. In a drive frequency of 1 kHz, the laser operates up to 20% duty cycle.
Resumo:
Quasi-continuous-wave operation of GaAs/AlGaAs quantum-cascade lasers with high average optical power is demonstrated. Double X-ray diffraction has been used to investigate the quality of the epitaxial material. The compositional gradients and the interface quality are controlled effectively. The corrected average power of per facet about 17 mW and temperature tuning coefficient of the gain peak about 0.91 nm/K from 83 K to 140 K is achieved in pulse operation. Best value of threshold current density is less than 3.0 kA/cm(2) at 83 K. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
By optimizing the molecule beam epitaxy growth condition, the quality of quantum cascade (QC) material has greatly been improved. The spectrum of double x-ray diffraction indicates that the interface between the constituent layers is very smooth, the lattice mismatch between the epilayer and the substrate is less than 0.1%, and the periodicity fluctuation of the active region is not more than 4.2%. The QC laser with the emission wavelength of about 5.1 mum is operated at the threshold of 0.73 kA/cm(2) at liquid nitrogen temperature with the repetition rate of 10kHz and at a duty cycle of 1%. Meanwhile, the performance of the laser can be improved with suitable post process techniques such as the metallic ohmic contact technology.
Resumo:
Double X-ray diffraction has been used to investigate InGaAs/InAlAs quantum cascade (QC) laser grown on InP substrate by molecule beam epitaxy, by means of which, excellent lattice matching, the interface smoothness, the uniformity of the thickness and the composition of the epilayer are disclosed. What is more, these results are in good agreement with designed value. The largest lattice mismatch is within 0.18% and the intersubband absorption wavelength between two quantized energy levels is achieved at about lambda = 5.1 mum at room temperature. At 77 K, the threshold density of the QC laser is less than 2.6 kA/cm(2) when the repetition rate is 5 kHz and the duty cycle is 1%. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Condensed clusters of point defects within an InGaN/AlGaN double heterostructure grown by metal-organic vapor phase epitaxy on sapphire substrate have been observed using transmission electron microscopy. The existence of voids results in failure of the heterostructure in electroluminescence. The voids are 50-100 nm in diameter and are distributed inhomogeneously within In0.25Ga0.75N/AlGaN active layers. The density of the voids was measured as 10(15) cm(-3), which corresponds to a density of dangling bonds of 10(20) cm(-3). These dangling bonds may fully deplete free carriers in this double heterostructure and result in the heterostructure having high resistivity as confirmed by electrical measurement. (C) 2003 Elsevier Science B.V. All rights reserved.