143 resultados para Rastreador solar


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The open circuit voltage (V-oc) of n-i-p type hydrogenated amorphous silicon (a-Si:H) solar cells has been examined by means of experimental and numerical modeling. The i- and p-layer limitations on V-oc are separated and the emphasis is to identify the impact of different kinds of p-layers. Hydrogenated protocrystalline, nanocrystalline and microcrystalline silicon p-layers were prepared and characterized using Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), optical transmittance and activation energy of dark-conductivity. The n-i-p a-Si:H solar cells incorporated with these p-layers were comparatively investigated, which demonstrated a wide variation of V-oc from 1.042 V to 0.369 V, under identical i- and n-layer conditions. It is found that the nanocrystalline silicon (nc-Si:H) p-layer with a certain nanocrystalline volume fraction leads to a higher V-oc. The optimum p-layer material for n-i-p type a-Si:H solar cells is not found at the onset of the transition between the amorphous to mixed phases, nor is it associated with a microcrystalline material with a large grain size and a high volume fraction of crystalline phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of diphasic nanocrystalline silicon films and solar cells was prepared using different hydrogen dilution ratios of silane by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). It was observed that after light soaking the open circuit voltage (V-oc) of the diphasic solar cells increased, while that of amorphous silicon solar cells decreased. Raman scattering spectroscopy was performed on the series of diphasic silicon films before and after light soaking. It was found that after light soaking the nanostruclures in the diphasic nanocrystalline silicon films were changed. Both the grain sizes and grain volume fraction reduced, while the grain boundary components increased. These results provide experimental evidence for the conjecture that the light-induced increase in V-oc of the diphasic nanocrystalline solar cells might be induced by the changes in the nanostructure of the intrinsic layer. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/1T0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 mu m)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm(2). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A V-shaped solar cell module consists of two tilted mono-crystalline cells [J. Li, China Patent No. 200410007708.6 (March, 2004)]. The angle included between the two tilted cells is 90 degrees. The two cells were fabricated by using polished silicon wafers. The scheme of both-side polished wafers has been proposed to reduce optical loss. Compared to solar cells in a planar way, the V-shaped structure enhances external quantum efficiency and leads to an increase of 15% in generation photocurrent density. The following three kinds of trapped photons are suggested to contribute to the increase: (1) infrared photons converted from visible photons due to a transformation mechanism, (2) photons reflected from top contact metal, and (3) a residual reflection which can not be eliminated by an antireflection coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to enhance light absorption of thin film poly-crystalline silicon (TF poly-Si) solar cells over a broad spectral range, and quantify the effectiveness of nanoshell light trapping structure over the full solar spectrum in theory, the effective photon trapping flux (EPTF) and effective photon trapping efficiency (EPTE) were firstly proposed by considering both the external quantum efficiency of TF poly-Si solar cell and scattering properties of light trapping structures. The EPTF, EPTE and scattering spectrum exhibit different behaviors depending on the geometric size and density of nanoshells that form the light trapping layer. With an optimum size and density of SiO2/Au nanoshell light trapping layer, the EPTE could reach up to 40% due to the enhancement of light trapping over a broad spectral range, especially from 500 to 800 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The output characteristics of micro-solar cell arrays are analyzed on the basis of a modified model in which the shunt resistance between cell lines results in current leakage. The modification mainly consists of adding a shunt resistor network to the traditional model. The obtained results agree well with the reported experimental results. The calculation results demonstrate that leakage current in substrate affects seriously the performance of GaAs micro- solar cell arrays. The performance of arrays can be improved by reducing the number of cells per line. In addition, at a certain level of integration, an appropriate space occupancy rate of the single cell is recommended for ensuring high open circuit voltages, and it is more appropriate to set the rates at 80%-90% through the calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnS/SnO heterojunction structured nanocrystals with zigzag rod-like connected morphology were prepared by using a simple two-step method. Bulk heterojunction solar cells were fabricated using the SnS/SnO nanocrystals blended with poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV) as the active layer. Compared with solar cells using SnS nanoparticles hybridized with MDMO-PPV as the active layer, the SnS/SnO devices showed better performance, with a power conversion efficiency higher by about one order in magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photovoltaic conversion efficiency for monolithic GaInP/GaInAs/Ge triple-junction cell with various bandgap combination (300 suns, AM1.5d) was theoretically calculated. An impressive improvement on conversion efficiency was observed for a bandgap combination of 1.708, 1.194, and 0.67 eV. A theoretical investigation was carried out on the effect of dislocation on the metamorphic structure's efficiency by regarding dislocation as minority-carrier recombination center. The results showed that only when dislocation density was less than 1.6x10(6) cm(-2), can this metamorphic combination exhibit its efficiency advantage over the fully-matched combination. In addition, we also briefly evaluated the lattice misfit dependence of the dislocation density for a group of metamorphic triple-junction system, and used it as guidance for the choice of the proper cell structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, bulk heterojunction photovoltaic devices based on the poly[2-methoxy-5-(3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV):Bi2S3 nanorods hybrid material were present. To optimize the performance of the devices, the interface modification of the hybrid material that has a significant impact on the exciton dissociation efficiency was studied. An improvement in the device performance was achieved by modifying the Bi2S3 surface with a thin dye layer. Moreover, modifying the Bi2S3 surface with anthracene-9-carboxylic acid can enhance the performance further. Compared with the solar cells with Bi2S3 nanorods hybrid with the MDMO-PPV as the active layer, the anthracene-9carboxylic acid modified devices are better in performance, with the power conversion efficiency higher by about one order in magnitude.