158 resultados para RELAXATION ANISOTROPY
Resumo:
In the present review, the measuring principle of reflectance difference spectroscopy (RDS) is given. As a powerful tool in the surface and interface analysis technologies, the application of RDS to the research on semiconductor materials is summarized. along with the origins of the in-plane optical anisotropy of semiconductors. And it is believed that RDS will play an important role in the electrooptic modification of Si-based semiconductor materials.
Resumo:
It is well known that asymmetry in the (001) direction can induce in-plane optical anisotropy (IPOA) in (001) quantum wells (QWs). In this letter, asymmetry is introduced in (001) GaAs/AlGaAs QWs by inserting 1 ML (monolayer) of InAs or AlAs at interfaces. Strong IPOA, which is comparable to that in the InGaAs/InP QWs with no common atom, is observed in the asymmetric GaAs/AlGaAs QW by reflectance difference spectroscopy. (C) 2006 American Institute of Physics.
Resumo:
By using reflectance difference spectroscopy we have studied the in-plane optical anisotropy of GaAs surfaces covered by ultrathin InAs layers. The strain evolution of the GaAs surface with the InAs deposition thickness can be obtained. It is found that the optical anisotropy and the surface tensile strain attain maximum values at the onset of the formation of InAs quantum dots (QDs) and then decrease rapidly as more InAs QDs are formed with the increase of InAs deposition. The origin of the optical anisotropy has been discussed.
Resumo:
We demonstrate tunnel magnetoresistance junctions based on a trilayer system consisting of an epitaxial NiMnSb, an aluminum oxide, and a CoFe trilayer. The junctions show a tunneling magnetoresistance of Delta R/R of 8.7% at room temperature which increases to 14.7% at 4.2 K. The layers show a clear separate switching and a small ferromagnetic coupling. A uniaxial in-plane anisotropy in the NiMnSb layer leads to different switching characteristics depending on the direction in which the magnetic field is applied, an effect which can be used for sensor applications. (c) 2006 American Institute of Physics.
Resumo:
Si0.75Ge0.25/Si/Si0.5Ge0.5 trilayer asymmetric superlattices were prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The nonlinear optical response caused by inherent asymmetric interfaces in this structure predicted by theories was verified by in-plane optical anisotropy in (001) plane measured via reflectance difference spectroscopy. The results show Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetric superlattice is optically biaxial and the two optical eigen axes in (001) plane are along the directions [110] and [-110], respectively. Reflectance difference response between the above two eigen axes can be influenced by the width of the trilayers and reaches as large as similar to 10(-4)-10(-3) in 15-period 2.7 nm-Si0.75Ge0.25/8 nm-Si/1.3 nm-Si0.5Ge0.5 superlattice when the normal incident light wavelength is in the range of 500-1100 nm, which is quite remarkable because the optical anisotropy does not exist in bulk Si.
Resumo:
The reduction of residual strain in cubic GaN growth by inserting a thermoannealing process is investigated. It is found that the epilayer with smaller tensile strain is subject to a wider optimal "growth window." Based on this process, we obtain the high-quality GaN film of pure cubic phase with the thickness of 4 mum by metalorganic chemical vapor deposition. The photoluminescence spectrum at room temperature shows the thick GaN layer has a near-band emission peak with a full width at half maximum of 42 meV which confirms its high crystal quality, further supported by the x-ray (002) diffraction measurement. A simplified model is demonstrated to interpret this strain effect on the growth process. (C) 2003 American Institute of Physics.
Resumo:
The in-plane optical anisotropies of a series of GaAs/AlxGa1-xAs single-quantum-well structures have been observed at room temperature by reflectance difference spectroscopy. The measured degree of polarization of the excitonic transitions is inversely proportional to the well width. Numerical calculations based on the envelope function approximation incorporating the effect of C-2v-interface symmetry have been performed to analyze the origin of the optical anisotropy. Good agreement with the experimental data is obtained when the optical anisotropy is attributed to anisotropic-interface structures. The fitted interface potential parameters are consistent with predicted values.
Resumo:
In order to overcome the large lattice mismatch in the heteroepitaxy, a new patterned compliant substrate method has been introduced, which has overcome the disadvantages of previously published methods. InP film of thickness 800 nm was directly grown on this substrate. Scanning electron microscopy (SEM) has shown that good surface morphology has been obtained. In addition, Photoluminescence (PL) and double crystal X-ray diffraction (DCXRD) study have shown that the residual strain has been reduced, and that the structure quality has been improved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Terbium ions were successfully incorporated in nano-sized zinc oxide particles with a doping concentration up to 3% by using a wet chemical route. Four narrow emission peaks of Tb3+ ions and a broad emission band of the surface states on ZnO nano-hosts were observed for all Tb-doped nanoparticles. Relaxation of carriers from excited states of ZnO hosts to rare earth (RE) dopants is disclosed by the fact that the emission intensity of Tb3+ centers increases with increased Tb content at the expense of the emission from surface defect states in ZnO matrix. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Two sensitive polarized spectroscopies, reflectance difference spectroscopy and photocurrent difference spectroscopy, are used to study the characteristic of the in-plane optical anisotropy in the symmetric and the asymmetric (001) GaAs/Al(Ga)As superlattices (SLs). The anisotropy spectra of the symmetric and the asymmetric SLs show significant difference: for symmetric ones, the anisotropies of the 1HH-->1E transition (1H1E) and 1L1E are dominant, and they are always approximately equal and opposite; while for asymmetric ones, the anisotropy of 1H1E is much less than that of 1L1E and 2H1E, and the anisotropy of 3H2E is very strong. The calculated anisotropy spectra within the envelope function model agree with the experimental results, and a perturbation approach is used to understand the role of the electric field and the interface potential in the anisotropy. (C) 2001 American Institute of Physics.
Resumo:
A trilayer asymmetric superlattice, Si/Si1-xGex/Si1-yGey, is proposed, in which the broken inversion symmetry makes the microstructure optically biaxial; in particular, inequivalent interfaces in this heterostructure may cause a polarization ratio as large as about 2.5% in the absence of an external field. The electronic structure and absorption spectra for two types of trilayer superlattice with different parameters are calculated by use of the tight-binding model; the findings indicate the importance of the carrier confinement for the anisotropy value. The effect of external electric field on the optical anisotropy for such structures has also been discussed, and a Pockels coefficient of 10-9 cm V-1 estimated.
Resumo:
InAs and InxGa1-xAs (x = 0.2 and 0.5) self-organized quantum dots (QDs) were fabricated on GaAs(0 0 1) by molecular beam epitaxy (MBE) and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), acid photoluminescence polarization spectrum (PLP). Both structural and optical properties of InxGa1-xAs QD layer are apparently different from those of InAs QD layer. AFM shows that InxGa1-xAs QDs tend to be aligned along the [1 (1) over bar 0] direction, while InAs QDs are distributed randomly. TEM demonstrates that there is strain modulation along [1 1 0] in the InxGa1-xAs QD layers. PLP shows that In0.5Ga0.5As islands present optical anisotropy along [1 1 0] and [1 (1) over bar 0] due to structural and strain field anisotropy for the islands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The rapid carrier capture and relaxation processes in InAs/GaAs quantum dots were studied at 77K by using a simple degenerate pump-probe technique. A rising process was observed in the transient reflectivity, following the initial fast relaxation associated with GaAs bulk matrix, and this rising process was assigned to be related to the carrier capture from the GaAs barriers to InAs layers. The assignment was modeled using Kramers-Kronig relation. By analyzing the rising process observed in the transient reflectivity, the carrier capture time constants were obtained. The measured capture times decrease with the increase of carrier concentration.
Resumo:
We have studied the spontaneous emission of polarized excitons in the GaInP/AlGaInP vertical-cavity surface-emitting lasers from 50 K to room temperature. It is observed that the spontaneous emission peak enters and leaves the resonant regime. At the resonant regime, the emission intensities of the perpendicularly and horizontally polarized excitons are enhanced and their proportions are different from that in nonresonant regime. These experimental results are explained by the dressed exciton theory of the semiconductor microcavity device. Based on this theory, the intensity enhancement and the polarization dependence are understood as cooperative emission and the microcavity anisotropy. (C) 2000 American Institute of Physics. [S0021-8979(00)05315-9].
Resumo:
An X-ray diffraction method, estimating the strain relaxation in an ultrathin layer, has been discussed by using kinematic and dynamical X-ray diffraction (XRD) theory. The characteristic parameter Delta Omega, used as the criterion of the strain relaxation in ultrathin layers, is deduced theoretically. It reveals that Delta Omega should be independent of the layer thickness in a coherently strained layer. By this method, we characterized our ultrathin GaNxAs1-x samples with N contents up to 5%. XRD measurements show that our GaNxAs1-x layers are coherently strained on GaAs even for such a large amount of N. Furthermore, a series of GaNxAs1-x samples with same N contents but different layer thicknesses were also characterized. It was found that the critical thickness (L-c) of GaNAs in the GaAs/GaNAs/GaAs structures determined by XRD measurement was 10 times smaller than the theoretical predictions based on the Matthews and Blakeslee model. This result was also confirmed by in situ observation of reflection high-energy electron diffraction (RHEED) and photoluminescence (PL) measurements. RHEED observation showed that the growth mode of GaNAs layer changed from 2D- to 3D-mode as the layer thickness exceeded L-c. PL measurements showed that the optical properties of GaNAs layers deteriorated rapidly as the layer thickness exceeded L-c. (C) 2000 Elsevier Science B.V. All rights reserved.