224 resultados para Hybrid auctions
Resumo:
Tunneling magnetoresistance (TMR) in Ga(0.9)2Mn(0.08)As/Al-O/Co40Fe40B20 trilayer hybrid structure as a function of temperature from 10 to 50 K with magnetic field vertical bar H vertical bar <= 2000 Oe has been studied. TMR ratio of 1.6% at low fields at 10 K was achieved with the applied current of 1 mu A. The behavior of junction resistance was well explained by the tunneling resistance across the barrier. Strong bias dependences of magnetoresistance and junction resistance were presented. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3068418]
Resumo:
A pulsed InGaAsP-Si hybrid laser is fabricated using metal bonding. A novel structure in which the optical coupling and metal bonding areas are transversely separated is employed to integrate the silicon waveguide with an InGaAsP multi-quantum well distributed feedback structure. When electrically pumped at room temperature, the laser operates with a threshold current density of 2.9 kA/cm(2) and a slope efficiency of 0.02 W/A. The 1542 nm laser output exits mainly from the Si waveguide.
Resumo:
The electric-tunable spin-independent magneto resistance effect has been theoretically investigated in ballistic regime within a two-dimensional electron gas modulated by magnetic-electric barrier nanostructure. By including the omitted stray field in previous investigations oil analogous structures, it is demonstrated based on this improved approximation that the magnetoresistance ratio for the considered structure can be efficiently enhanced by a proper electric barrier up to the maximum value depending on the specific magnetic suppression. Besides, it is also shown the introduction of positive electrostatic modulation can effectively overcome the degradation of magnetoresistance ratio for asymmetric configuration and enhance the visibility of periodic pattern induced by the size effect, while for an opposite modulation the system magnetoresistance ratio concerned may change its sign. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3041477]
Resumo:
We present a novel 800-nm Bragg-mirror-based semiconductor saturable absorption mirror with low temperature and surface state hybrid absorber, with which we can realize the passive soliton mode locking of a Ti:sapphire laser pumped by 532-nm green laser which produces pulses as short as 37 fs. The reflection bandwidth of the mirror is 30 nm and the pulse frequency is 107 MHz. The average output power is 1.1 W at the pump power of 7.6 W.
Resumo:
This paper proposes a novel phase-locked loop (PLL) frequency synthesizer using single-electron devices (SEDs) and metal-oxide-semiconductor (MOS) field-effect transistors. The PLL frequency synthesizer mainly consists of a single-electron transistor (SET)/MOS hybrid voltage-controlled oscillator circuit, a single-electron (SE) turnstile/MOS hybrid phase-frequency detector (PFD) circuit and a SE turnstile/MOS hybrid frequency divider. The phase-frequency detection and frequency-division functions are realized by manipulating the single electrons. We propose a SPICE model to describe the behavior of the MOSFET-based SE turnstile. The authors simulate the performance of the PILL block circuits and the whole PLL synthesizer. Simulation results indicated that the circuit can well perform the operation of the PLL frequency synthesizer at room temperature. The PILL synthesizer is very compact. The total number of the transistors is less than 50. The power dissipation of the proposed PLL circuit is less than 3 uW. The authors discuss the effect of fabrication tolerance, the effect of background charge and the SE transfer accuracy on the performance of the PLL circuit. A technique to compensate parameter dispersions of SEDs is proposed.
Resumo:
ZnO nanocrystals were synthesized by hydrolysis in methanol. X-ray diffraction and photoluminescence spectra confirm that good crystallized ZnO nanoparticles were formed. Utilizing those ZnO nanoparticles and poly [2- methoxy-5 - (3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV), light emitting devices with indium tin oxide (ITO)/poly(3,4-oxyethyleneoxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS)/ ZnO:MDMO-PPV/Al and ITO/PEDOT:PSS/MDMO-PPV/Al structures were fabricated. Electrolummescence (EL) spectra reveal that EL yield of hybrid MDMO-PPV and ZnO nanocrystals devices increased greatly as compared with pristine MDMO-PPV devices. The current-voltage characteristics indicate that addition of ZnO nanocrystals can facilitate electrical injection and charge transport. The decreased energy barrier to electron injection is responsible for the increased efficiency of electron injection. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Compared to conjugated polymer poly[2-methoxy-5- (3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) solar cells, bulk heterojunction solar cells composed of zinc oxide (ZnO) nanocrystals and MDMO-PPV have a better energy conversion efficiency, However, ultraviolet (UV) light deteriorates the performance of solar cells composed of ZnO and MDMO-PPV. We propose a model to explain the effect of UV illumination on these ZnO:MDMO-PPV solar cells. According to this model, the degradation from UV illumination is due to a decrease of exciton dissociation efficiency, Our model is based on the experimental results such as the measurements of current density versus voltage, photoluminescence, and photocurrent.
Resumo:
We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3', 7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) bulk heterojuriction photovoltaic cells. Photolummescence quenching experimental results indicate that the ultra,fast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity about 1.2 eV greater than that of MDMO-PPV. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electroluminescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.
Resumo:
This paper proposes two kinds of novel hybrid voltage controlled ring oscillators (VCO) using a single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. The novel SET/MOS hybrid VCO circuits possess the merits of both the SET circuit and the MOS circuit. The novel VCO circuits have several advantages: wide frequency tuning range, low power dissipation, and large load capability. We use the SPICE compact macro model to describe the SET and simulate the performances of the SET/MOS hybrid VCO circuits by HSPICE simulator. Simulation results demonstrate that the hybrid circuits can operate well as a VCO at room temperature. The oscillation frequency of the VCO circuits could be as high as 1 GHz, with a -71 dBc/Hz phase noise at 1 MHz offset frequency. The power dissipations are lower than 2 uW. We studied the effect of fabrication tolerance, background charge, and operating temperature on the performances of the circuits.
Resumo:
MnSb/porous silicon hybrid structure was prepared by physical vapor deposition technique. The structure and surface morphology of the MnSb films were analyzed by X-ray diffraction and scanning electron microscope, respectively. The magnetic hysteresis loops were obtained by an alternative gradient magnetometer. Based on the measurements, only MnSb phase was found and the surface morphology was rough and island-like. MnSb thin films show ferromagnetism at room temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We report a new type of photonic memory cell based on a semiconductor quantum dot (QD)-quantum well (QW) hybrid structure, in which photo-generated excitons can be decomposed into separated electrons and holes, and stored in QW and QDs respectively. Storage and retrieval of photonic signals are verified by time-resolved photoluminescence experiments. A storage time in excess of 100ms has been obtained at a temperature of 10 K while the switching speed reaches the order of ten megahertz.
Resumo:
A complete set of match calculation methods for optimum sizing of PV/wind hybrid system is presented. In this method, the more accurate and practical mathematic models for characterizing PV module, wind generator and battery are adopted; combining with hourly measured meteorologic data and load data, the performance of a PV/wind hybrid system is determined on a hourly basis; by fixing the capacity of wind generators, the whole year's LPSP (loss of power supply probability) values of PV/wind hybrid systems with different capacity of PV array and battery bank are calculated, then the trade-off curve between battery bank and PV array capacity is drawn for the given LPSP value; the optimum configuration which can meet the energy demand with the minimum cost can be found by drawing a tangent to the trade-off curve with the slope representing the relationship between cost of PV module and that of the battery. According to this match calculation method, a set of match calculation programs for optimum sizing of PV/wind hybrid systems have been developed. Applying these match calculation programs to an assumed PV/wind hybrid system to be installed at Waglan island of Hong Kong, the optimum configuration and its hourly, daily, monthly and yearly performances are given. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A polarization insensitive gain medium for optical amplifiers has been fabricated. The active layer is a structure with alternate tensile and compressive strain quantum wells. The waveguide is made into a taper with angled facets. In the experiment we found that the structure can suppress the lasing and decrease the polarization sensitivity. The gain imbalance between transverse electric and transverse magnetic gains is small, and 0.1 dB is obtained at a driving current of 100 mA. The full-width at half-maximum of amplified spontaneous emission is 40 nm within large current. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The hybrid integrated photonic switch and not logic gate based on the integration of a GaAs VCSEL (Vertical Cavity Surface Emitting Lasers) and a MISS (Metal-Insulator-Semiconductor Switches) device are reported. The GaAs VCSEL is fabricated by selective etching and selective oxidation. The Ultra-Thin semi-Insulating layer (UTI) of the GaAs MISS is formed by using oxidation of A1As that is grown by MBE. The accurate control of UTI and the processing compatibility between VCSEL and MISS are solved by this procedure. Ifa VCSEL is connected in series with a MISS, the integrated device can be used as a photonic switch, or a light amplifier. A low switching power (10 mu W) and a good on-off ratio (17 dB contrast) have been achieved. If they are connected in parallel, they perform a photonic NOT gate operation.