161 resultados para 405
Resumo:
Ecological survey of macrozoobenthos assemblages was carried out at 32 sites in the East Dongting Nature Reserve, located in the northern region of the East Dongting Lake in the middle basin of the Yangtze River, China. All total 51 taxa including 18 oligochaetes, 15 mollusks, 14 insects and four other animals were recorded. Mollusks composed the dominant group and accounted for more than 70% of the total abundance. Assemblages were composed mainly of scrapers (66.7%) and collector-gatherers (nearly 20%), and to a lesser extent collector-filterers (roughly 12%), predators (ca. 7%), and shredders (ca. 6%). Two-way indicator species analysis, detrended correspondence, and canonical correspondence analysis (CCA) were employed to identify the relationships between macrozoobenthos assemblages and environmental variables. Thirty-two sites were separated into four site groups based on composition and relative abundance of benthic macroinvertebrates. CCA detected that water depth, pH, conductivity, SiO2, total nitrogen, total phosphorus, alkalinity, hardness, and Ca2+, were significant environmental factors influencing the pattern of macozoobenthos. In this minimal subset, water depth, pH, alkalinity and hardness were the most influential variables.
Resumo:
We report the quantitative strain characterization in semiconductor heterostructures of silicon-germaniums (Si(0.76)Geo(0.24)) grown on Si substrate by an ultra-high vacuum chemical vapor deposition system. The relaxed SiGe virtual substrate has been achieved by thermal annealing of the SiGe film with an inserted Ge layer. Strain analysis was performed using a combination of high-resolution transmission electron microscopy and geometric phase analysis.
Resumo:
We fabricated a phosphor-conversion white light using an InGaN laser diode that emits 405 nm near-ultraviolet (n-UV) light and phosphors that emit in the blue and yellow regions when excited by the n-UV and blue light, respectively.The relationship of the luminous flux and the luminous efficacy of the white light with injection current was discussed. The luminous flux increased linearly with increasing current above the threshold of the laser diode, and at 80 mA injection current, the luminous flux and luminous efficacy were estimated to be 5.7 lm and 13 lm/w, respectively. The shift of the Commission International de I'Eclairage coordinates, color temperature, and color rendering index with current are very slight and negligible, which indicates that the blue and the yellow phosphors have an excellent stability and a highly stable white light can be obtained by this way. (c) 2008 American Institute of Physics.
Resumo:
A phosphor-conversion white light using an InGaN laser diode that emits 405 nm near-ultraviolet (n-UV) light and phosphors that emit in the red/green/blue region when excited by the n-UV light was fabricated. The relationship of the luminous flux and the luminous efficacy of the white light with injection current were discussed. Based on the evaluation method for luminous efficacy of light sources established by the Commission International de I'Eclairage (CIE) and the phosphor used in this experiment, a theoretical analysis of the experiment results and the maximum luminous efficacy of this white light fabrication method were also presented.
Resumo:
Confinement factor and absorption loss of AlInGaN based multiquantum well laser diodes (LDs) were investigated by numerical simulation based on a two-dimensional waveguide model. The simulation results indicate that an increased ridge height of the waveguide structure can enhance the lateral optical confinement and reduce the threshold current. For 405 nm violet LDs, the effects of p-AlGaN cladding layer composition and thickness on confinement factor and absorption loss were analyzed. The experimental results are in good agreement with the simulation analysis. Compared to violet LD, the confinement factors of 450 nm blue LD and 530 nm green LD were much lower. Using InGaN as waveguide layers that has higher refractive index than GaN will effectively enhance the optical confinement for blue and green LDs. The LDs based on nonpolar substrate allow for thick well layers and will increase the confinement factor several times. Furthermore, the confinement factor is less sensitive to alloys composition of waveguide and cladding layers, being an advantage especially important for ultraviolet and green LDs.
Resumo:
GaN epilayers grown by molecular beam epitaxy using NH3 as the nitrogen source were found to contain hydrogen. We further notice that the background electron concentration in GaN can be correlated with the amount of hydrogen contaminant. X-ray photoelectron spectroscopy (XPS) measurements of the N Is peak reveal that hydrogen is bound to nitrogen. This will make the corresponding Ga atom see insufficient N counterpart, as can be inferred from the XPS Ga 3d spectrum. We then think that nitrogen in the lattice terminated by hydrogen is an effective nitrogen vacancy and hence a donor accounting for the background electrons.
Resumo:
GexSi1-x epilayers were grown at 700-900 degrees C by atmospheric pressure chemical vapour deposition. GexSi1-x, Si and Ge growth rates as functions of GeH4 flow are considered separately to investigate how the growth of the epilayers is enhanced. Arrhenius plots of Si and Ge incorporation in the GexSi1-x growth show the activation energies associated with the growth rates are about 1.2 eV for silicon and 0.4 eV for germanium, indicating that Si growth is limited by surface kinetics and Ge growth is limited by mass transport. A model based on this idea is proposed and used to simulate the growth of GexSi1-x. The calculation and experiment are in good agreement. Growth rate and film composition increase monotonically with growth pressure; both observations are explained by the model.
Resumo:
Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
n-ZnO/p-GaN heterojunction light-emitting diodes with and without a sandwiched AlN layer were fabricated. The electroluminescence (EL) spectrum acquired from the n-ZnO/p-GaN displays broad emission at 650 nm originating from ZnO and weak emission at 440 nm from GaN, whereas the n-ZnO/AlN/p-GaN exhibits strong violet emission at 405 nm from ZnO without GaN emission. The EL intensity is greatly enhanced by inserting a thin AlN intermediate layer and it can be attributed to the suppressed formation of the GaOx interfacial layer and confinement effect rendered by the AlN potential barrier layer.
Resumo:
We report the observation of intense spontaneous emission of green light from LiF:F-2:F-3(+) centers in active channel waveguides generated in lithium fluoride crystals by near-infrared femtosecond laser radiation. While irradiating the crystal at room temperature with 405 nm light from a laser diode, yellow and green emission was seen by the naked eye. Stripe waveguides were fabricated by translating the crystal along the irradiated laser pulse, and their guiding properties and fluorescence spectra at 540 nm demonstrated. This single-step process inducing a waveguide structure offers a good prospect for the development of a waveguide laser in bulk LiF crystals.
Resumo:
Photoinduced anisotropy in bacteriorhodopsin (BR) film arises from the selective bleaching of BR molecules to linearly polarized light. The kinetics of photoinduced anisotropy excited by single and two pumping beams are investigated theoretically and experimentally. Compared with a single pumping beam (650 nm), which produces comparatively small photoinduced anisotropy, dual-wavelength linearly polarized pumping beams (650 and 405 nm) can obviously change the photoinduced anisotropy. When the polarization orientation of the 405 ran pumping beam is perpendicular to that of the 650 nm pumping beam, the peak and steady values of the photoinduced anisotropy kinetic curves are remarkably enhanced. But when the two pumping beams have parallel polarization orientation, the peak and steady values are restrained. At a fixed intensity of the 650 nm pumping beam, there exists an optimal intensity for the 405 nm pumping beam to maximize the value of the photoinduced anisotropy. The photoinduced transmittance of the polarizer-BR-analyzer system is modulated by the polarization angle of the 405 nm pumping beam in an approximate-cosine form. (C) 2008 Optical Society of America.
Resumo:
采用人工模拟降雨试验,研究水文条件对紫色土坡面土壤侵蚀及氮和磷养分流失的影响。试验处理包括2个施肥水平(低肥和高肥水平),4个水文条件(自由下渗、土壤水分饱和、壤中流、壤中流+降雨)和一个降雨强度(60 mm/h,历时60 min)。结果表明:壤中流+降雨和土壤水分饱和条件下的土壤侵蚀量分别是自由下渗条件下的3.1和1.7倍,同自由下渗相比,壤中流、壤中流+降雨和土壤水分饱和条件下,地表径流中NO3-N、HPO4-P的浓度和流失量有显著增加;低肥水平条件下,自由下渗、土壤水分饱和、壤中流和壤中流+降雨地表径流中,NO3-N的浓度分别是0.88、58.90、698.41和87.80 mg/L,对应水文条件下地表径流中,HPO4-P的浓度分别是0.252、0.322、0.811和0.383 mg/L,高肥水平条件下,径流中的NO3-N和HPO4-P的浓度也有相同的趋势;土壤水分饱和条件下,地表径流中NO3-N和HPO4-P的流失量分别是自由下渗条件下的27~39和1.3倍,壤中流+降雨条件下,地表径流中NO3-N和HPO4-P的流失量分别是自由下渗条件下的100~114和1.5~1.7倍,同时,壤中流+降雨和土壤...