793 resultados para Gallium Arsenide (GaAs)
Resumo:
于G批量导入至Hzhangdi
Resumo:
于G批量导入至Hzhangdi
Resumo:
于G批量导入至Hzhangdi
Resumo:
The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143025]
Resumo:
于G批量导入至Hzhangdi
Resumo:
In this work, we present the growth of InAs rings by droplet epitaxy. A complete process from the rings formation to their density saturation has been demonstrated: A morphological evolution with the varying of the indium deposition amount has been, clearly observed. Our results indicate that there, is a critical deposition amount (similar to 1.1 ML) for the indium to form InAs dots before droplets form; there is also a critical deposition amount (similar to 1.4 ML) to form InAs ring, but it is caused by the formation of droplets as the deposition amount increases. The density of the rings saturates when the deposition amount exceeds similar to 3.3 ML; because the adsorbed indium atoms block sites for further adsorption and the following supplied In only contributes to the size increase of In droplets. Still, as the In deposition amount increases, we can find coupled quantum rings. Moreover, the wetting layer properties of these structures are studied by reflectance difference spectroscopy, which shows a complicated evolution with the In amount. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
A theoretical study of modal gain in p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers is presented. The expression of modal gain is derived, which includes an effective ratio that describes how many QDs contribute to the modal gain. The calculated results indicate that the modal gain with the effective ratio is much smaller than that without the effective ratio. The calculated maximum modal gain is is a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial in achieving a larger maximum modal gain that leads to lower threshold current density and higher differential modal gain. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The wetting layers (WL) in InAs/GaAs quantum-dot system have been studied by reflectance difference spectroscopy (RDS), in which two structures related to the heavy-hole (HH) and light-hole (LH) transitions in the WL have been observed. The evolution and segregation behaviors of WL during Stranski-Krastanow (SK) growth mode have been studied from the analysis of the WL-related optical transition energies. It has been found that the segregation coefficient of Indium atoms varies linearly with the InAs amount in WL. In addition, the effect of the growth temperature on the critical thickness for InAs island formation has also been studied. The critical thickness defined by the appearance of InAs dots, which is determined by AFM, shows a complex variation with the growth temperature. However, the critical thickness determined by RDS is almost constant in the range of 510-540 degrees C.
Resumo:
于G批量导入至Hzhangdi
Resumo:
于G批量导入至Hzhangdi
Resumo:
Low-temperature-grown GaAs (LT-GaAs) of 1-um thickness was grown at 250 degrees C on semi-insulating GaAs (001) substrate using EPI GEN-II solid-source MBE system. The sample was then in situ annealed for 10 min at 600 degrees C under As-rich condition. THz emitters were fabricated on this LTGaAs with three different photoconductive dipole antenna gaps of 1-mm, 3-mm, and 5-mm, respectively. The spectral bandwidth of 2.75 THz was obtaind with time domain spectroscopy. It is found that THz emission efficiency is increased with decreasing antenna gap. Two carrier lifetimes, 0.469 ps and 3.759 ps, were obtained with time-resolved transient reflection-type pump-probe spectroscopy.
Resumo:
Morphology evolution of high-index (331)A surfaces during molecular beam epitaxy (MBE) growth have been investigated in order to uncover their unique physic properties and fabricate spatially ordered low dimensional nanostructures. Atomic Force Microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature in conventional MBE. However, this situation is reversed in atomic hydrogen-assisted MBE, indicating that step bunching is partly suppressed. We attribute this to the reduced surface migration length of Ga adatoms with atomic hydrogen. By using the step arrays formed on GaAs (331)A surfaces as the templates, we fabricated laterally ordered InGaAs self-aligned nanowires.
Resumo:
We investigate about controlling of photoluminescence (PL) wavelengths of InAs/GaAs self-assembled quantum dots (QDs) sandwiched with combination strained-buffer layer (CSBL) and combination strained-reducing layer (CSRL). The emission peak position of QDs is red-shifted to 1.37 mu m. The density of the QDs is increased to 1.17x10(10) cm(-2). It is indicated that optical properties of QDs could be improved by optimizing of the buffer and covering layers for the QDs. These results may provide a new way to further developing GaAs-based 1.3 mu m light sources.
Resumo:
Surface morphology evolution of strained InAs/GaAs(331)A films was systematically investigated in this paper. Under As-rich conditions, InAs elongated islands aligned along [1 (1) over bar0] are formed at a substrate temperature of 510 degrees C. We explained it as a result of the anisotropic diffusion of adatoms. Under In-rich conditions, striking change has occurred with respect to the surface morphology of the InAs layers. Instead of anisotropic InAs elongated islands, unique island-pit pairs randomly distributed on the whole surface were observed. Using cooperative nucleation mechanisms proposed by Jesson et al. [Phys. Rev. Lett. 77, 1330 (1996)], we interpret the resulting surface morphology evolution.
Resumo:
Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs(100) substrates grown by metalorganic chemical vapor deposition (MOCVD) is studied. An abnormal trend of the evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then there is a sudden decrease at 535 degrees C. Photoluminescence (PL) studies show that QDs on vicinal substrates have a narrower PL line width, a longer emission wavelength and a larger PL intensity.