124 resultados para conductive
Resumo:
A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the annealing and activation of silicon implanted in both as-grown Fe-doped semi-insulating (SI) InP substrate and undoped SI InP substrate obtained by annealing high purity conductive InP wafer (wafer-annealed). Si implantations were performed at an energy of 500 keV and a dose of 1 X 10(15) cm(-2). Following the implantations, rapid thermal annealing (RTA) cycles were carried out for 30 s at different temperatures. The results of Raman measurements show that for 700degreesC/30s RTA, the two Si-implanted SI InP substrates have acquired a high degree of lattice recovery and electrical activation. However, further Hall measurements indicate that the carrier concentration of the wafer-annealed SI InP substrate is about three times higher than that of the as-grown Fe-doped SI InP substrate. The difference can be ascribed to the low Fe concentration of the wafer-annealed SI InP substrate.These experimental data imply that the use of the wafer-annealed SI InP substrate can be conducive to the improvement of InP-based device performances. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The transport properties through a quantum dot are calculated using the recursion method. The results show that the electric fields can move the conductive peaks along the high- and low-energies. The electric field changes the intensity of conductance slightly. Our theoretical results should be useful for researching and making low-dimensional semiconductor optoelectronic devices. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Tensile-strained InAlAs layers have been grown by solid-source molecular beam epitaxy on as-grown Fe-doped semi-insulating (SI) InP substrates and undoped SI InP substrates obtained by annealing undoped conductive InP wafers (wafer-annealed InP). The effect of the two substrates on InAlAs epilayers and InAlAs/InP type II heterostructures has been studied by using a variety of characterization techniques. Our calculation data proved that the out-diffusion of Fe atoms in InP substrate may not take place due to their low diffusion, coefficient. Double-crystal X-ray diffraction measurements show that the lattice mismatch between the InAlAs layers and the two substrates is different, which is originated from their different Fe concentrations. Furthermore, photoluminescence results indicate that the type II heterostructure grown on the wafer-annealed InP substrate exhibits better optical and interface properties than that grown on the as-grown Fe-doped substrate. We have also given a physically coherent explanation on the basis of these investigations. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the photoluminescence mapping characteristics of semi-insulating (SI) InP wafers obtained by annealing in iron phosphide ambience (FeP2-annealed). Compared with as-grown Fe-doped and undoped SI InP wafers prepared by annealing in pure phosphorus vapour (P-annealed), the FeP2-annealed ST InP wafer has been found to exhibit a better photoluminescence uniformity. Radial Hall measurements also show that there is a better resistivity uniformity on the FeP2-annealed Sl InP wafer. When comparing the distribution of deep levels between the annealed wafers measured by optical transient Current spectroscopy, we find that the incorporation of iron atoms into the Sl InP Suppresses the formation of a few defects. The correlation observed in this study implies that annealing in iron phosphorus ambience makes Fe atoms diffuse uniformly and occupy the indium site in the Sl InP lattice. As it stands, we believe that annealing undoped conductive InP in iron phosphide vapour is an effective means to obtain semi-insulating InP wafers with superior uniformity.
Resumo:
A set of numerical analyses for momentum and heat transfer For a 3 in. (0.075 m) diameter Liquid Encapsulant Czochralski (LEC) growth of single-crystal GaAs with or without all axial magnetic field was carried Out using the finite-element method. The analyses assume a pseudosteady axisymmetric state with laminar floats. Convective and conductive heat transfers. radiative heat transfer between diffuse surfaces and the Navier-Stokes equations for both melt and encapsulant and electric current stream function equations Cor melt and crystal Lire considered together and solved simultaneously. The effect of the thickness of encapsulant. the imposed magnetic field strength as well as the rotation rate of crystal and crucible on the flow and heat transfer were investigated. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Bacteriorhodopsin (BR) films oriented by an electrophoretic method are deposited on a transparent conductive ITO glass. A counterelectrode of copper and gelose gel is used to compose a sandwich-type photodetector with the structure of ITO/BR film/gelose gel/Cu. A single 30-ps laser pulse and a mode-locked pulse train are respectively used to excite the BR photodetector. The ultrafast failing edge and the bipolar response signal are measured by the digital oscilloscope under seven different time ranges. Marquardt nonlinear least squares fitting is used to fit all the experimental data and a good fitting equation is found to describe the kinetic process of the photoelectric signal. Data fitting resolves six exponential components that can be assigned to a seven-step BR photocycle model: BR-->K-->KL-->L-->M-->N-->O-->BR. Comparing tests of the BR photodetector with a 100-ps Si PIN photodiode demonstrates that this type of BIR photocletector has at least 100-ps response time and can also serve as a fast photoelectric switch. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing
Resumo:
In-fibre chemical and optical sensors based on silver nanocrystals modified microstructured polymer optical fibres (MPOFs) were demonstrated. The silver nanocrystals modified MPOFs were formed by direct chemical reduction of silver ammonia complex ions on the templates of array holes in the microstructure polymer optical fibres. The nanotube-like and nanoisland-like Ag-modified MPOFs could be obtained by adjusting the conditions of Ag-formation in the air holes of MPOFs. SEM images showed that the higher concentration of the reaction solution (silver ammonia 0.5 mol/L, glucose 0.25 mol/L), gave rise to a tubular silver layer in MPOF, while the lower concentration (silver ammonia 0.1 M, glucose 0.05 M) produced an island-like Ag nanocrystal modified MPOF. The tubular Ag-MPOF composite fibre was conductive and could be directly used as array electrodes in electrochemical analyses. It displayed high electrochemical activity on sensing nitrate or nitrite ions. The enhanced fluorescence of dye molecules was observed when the island-like Ag-modified MPOF was inserted into a fluorescent dye solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
有机/无机杂化功能超薄膜是二十一世纪分子科学的重要发展前沿之一,设计具有功能性的有机/无机杂化薄膜已成为这一领域的挑战性课题。本论文分别采用Lallgmuir-B1odgett(LB)膜技术及溶胶一凝胶薄膜组装技术,将稀土无机配合物和稀土有机配合物分别与有机大分子化合物进行薄膜分子组装,对稀土配合物有机/无机杂化薄膜的光、电性质进行了研究。采用LB技术,将K11Ce(PWllO39)2·22H2O,K11Eu(PW11O39)2·25H2O,K11Gd(PW11O39)2·24H2O,K11Sm(PMo11O39)2·19H2O,K11Ce(PMo11O39)2·23H2O,K11Eu(PMo11O39)2·22H2O,K11Gd(PMo11O39)2·2OH2O,K11La(PMo11O39)2·18H2O八种稀土杂多化合物分别掺杂到聚喳琳中,得到十八胺(十八酸)/聚喳琳/稀土杂多化合物导电杂化LB膜。杂化LB膜表面的稀土杂多化合物颗粒大小在30-80nm之间。电性质研究表明,稀土杂多化合物的掺杂可使聚喳琳的导电性显著提高,且钥系稀土杂多化合物掺杂使聚哇琳的导电性增加更为显著。采用溶胶一凝胶薄膜组装技术,将K13(EuSiW11O39)2·28H2O,K13(EuGewl 1039)2·25H2O,K巧(EuBWllO39)2·22H2O,N钩SmWlo036·18H20,Na9DyS10O36·22H2O五种稀土杂多化合物分别与聚醋进行薄膜组装,得到聚醋/稀土杂多化合物溶胶一凝胶膜。荧光光谱研究表明,稀土离子在溶胶一凝胶膜中格位对称性降低,红橙比和黄蓝比发生了改变。1:11型稀土杂多化合物固体与聚酷/稀土杂多化合物溶胶一凝胶膜有不同的能量转移过程,在溶胶一凝胶膜中,配体能将能量传递给稀土离子。采用原位法将对十六烷氧基苯甲酸试及邻十七酞基苯甲酸试有机配合物分别进行了溶胶一凝胶薄膜组装,对其荧光性质进行了研究。结果表明,芳香梭酸配体与稀土诫离子有较好的能级匹配,能够有效地将吸收的能量传递给Tb3+离子,薄膜具有良好的发绿光性能。
Resumo:
针对有机一无机杂化材料制备过程中致命的体积收缩问题,本论文相继选用一系列具有亲水性官能团的聚倍半硅氧化物类前驱体为基体,采用溶胶一凝胶方法,以区域限制方式把水溶性导电聚苯胺固定在三维无机网络内,获得了耐水型自支撑杂化导电膜,该自支撑膜呈现出一定的机械强度与耐磨性。同时,为了进一步增加有机、无机组分之间的作用力,获取分子级别杂化材料,本文尝试了在导电聚苯胺与无机网络之间引入共价键、离子键等较强相互作用,得到了一些有意义的结果,具体如下:(1)亲水性的倍半硅氧烷前驱体、桥联倍半硅氧烷前驱体均能与水溶性导电聚苯胺形成平整的自支撑膜,该导电膜呈现出较好的耐”水性。(2)通过一步掺杂法制备的化学键接型水溶性导电聚苯胺/无机杂化膜除显示出良好的耐水性外,其热稳定性也得到了提高,从而为耐热型导电杂化膜的开发提供了思路。(3)有机一无机组分间通过离子键接引入静电相互作用亦是提高体系相容性,获取耐水型自支撑杂化膜的另一有效的方法。但由于导电膜中含有大量的离子键,与上述两体系相比,机械强度显得稍脆。(4)带有长链状亲水基团的掺杂剂酸性磷酸酷具有很强的自组装能力,不仅能在杂化体系中指导聚苯胺纳米管的构筑,而且能通过聚合单体法直接生成大批量聚苯胺纳米管材料。
RESEARCH ON ELECTRICAL-PROPERTIES OF AMPHIPHILIC LIPID-MEMBRANES BY MEANS OF INTERDIGITAL ELECTRODES
Resumo:
Lipids are the main component of all cell membranes and also important mimetic materials. Moreover, it was found recently that they can be used as sensitive membranes for olfactory and taste sensors. Hence the understanding of lipid resistance is important both in sensors and in life sciences. Thirteen lipids were examined by means of interdigital electrodes with narrow gaps of 20-50 mu m, made by IC technology. The membrane lateral resistance in air, resisting electrical voltage, the influence of impurities on resistance and the resistance change in acetic acid vapour are presented for the first time. It is shown that the electrical resistivity for self-assembling lipids depends on their duration of being in an electric field and the content of the conductive impurities. The interdigital electrode is a transducer as well as a powerful tool for researching biomaterials and mimicking materials. The conducting mechanism of lipids is discussed. This method is also suitable for some polymer membranes.
Resumo:
The stress and strain fields in self-organized growth coherent quantum dots (QD) structures are investigated in detail by two-dimension and three-dimension finite element analyses for lensed-shaped QDs. The nonobjective isolate quantum dot system is used. The calculated results can be directly used to evaluate the conductive band and valence band confinement potential and strain introduced by the effective mass of the charge carriers in strain QD.
Resumo:
The n-type GaAs substrates are used and their conductive type is changed to p-type by tunnel junction for AlGaInP light emitting diodes (TJ-LED), then n-type GaP layer is used as current spreading layer. Because resistivity of the n-type GaP is lower than that of p-type, the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n-type GaP current spreading layer. For TJ-LED with 3μm n-type GaP current spreading layer, experimental results show that compared with conventional LED with p-type GaP current spreading layer, light output power is increased for 50% at 20mA and for 66.7% at 100mA.
Resumo:
A process for fabricating n channel JFET/SOS (junction field-effect transistors on silicon-on-sapphire) has been researched. The gate p(+)n junction was obtained by diffusion, and the conductive channel was gotten by a double ion implantation. Both enhancement and depletion mode transistors were fabricated in different processing conditions. From the results of the Co-50 gamma ray irradiation experimental we found that the devices had a good total dose radiation-hardness. When the tot;ll dose was 5Mrad(Si), their threshold voltages shift was less than 0.1V. The variation of transconductance and the channel leakage current were also little.