139 resultados para Presse -- Concentration
Resumo:
There was a positive correlation between the concentration of organic carbon and potential respiration as measured by carbon dioxide evolution (R-2 = 0.923) and oxygen consumption (R-2 = 0.986) in soil samples collected from the bottoms of drained ponds. This finding supports the frequent use of organic carbon analysis as an indicator of sediment respiration rate under optimal conditions in commercial aquaculture facilities. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nannochloropsis sp. was grown with different levels of nitrate, phosphate, salinity and temperature with CO2 at 2,800 mu l l(-1). Increased levels of NaNO3 and KH2PO4 raised protein and polyunsaturated fatty acids (PUFAs) contents but decreased carbohydrate, total lipid and total fatty acids (TFA) contents. Nannochloropsis sp. grew well at salinities from 22 to 49 g l(-1), and lowering salinity enhanced TFA and PUFAs contents. TFA contents increased with the increasing temperature but PUFAs contents decreased. The highest eicosapentaenoic acid (EPA, 20:5 omega 3) content based on the dry mass was above 3% under low N (150 mu M NaNO3) or high N (3000 mu M NaNO3) condition. Excessive nitrate, low salinity and temperature are thus favorable factors for improving EPA yields in Nannochloropsis sp.
Resumo:
To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations, Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2 concentrations within the range 3-186 μ mol/L and the biochemical composition, carbonic anhydrase (CA), and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate, and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186 μ mol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μ mol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2 enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.
Resumo:
Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO2 at varied levels of light to see the impacts of doubled atmospheric CO2 concentration on its growth and photosynthesis. The CO2 enrichment did not affect the growth rate (mu), but significantly increased the cell density when light was sufficiently supplied. The CO2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO2 enrichment under either the high-light or low-light conditions.
Resumo:
The effect of food concentration on the life history of three types of Brachionus calciflorus females (amictic, unfertilized mictic and fertilized mictic female) was studied with replicated individual cultures at 25 degrees and at four food concentrations (1.5, 3.0, 6.0 and 9.0 x 10(6) cells mL(-1)) of Scenedesmus obliquus. There were highly significant effects of both food concentration and female type, independently and in interaction on the duration of juvenile period of the rotifer, but neither a;ere the effects on the duration of post-reproductive period and mean life-span. The duration of juvenile period of unfertilized mictic female at the food concentration of 9.0 x 10(6) cells mL(-1) was the longest among all the food concentration-female type combinations. Both food concentration and female type influenced significantly the duration of reproductive period and the number of eggs produced by each type of female per life cycle, respectively. There was, however, no significant interaction between food level and female type. Among the three types of females, the number of eggs produced by an unfertilized mictic female was the largest. and that of a fertilized mictic female was the smallest.
Resumo:
The growth response of Chlorella vulgaris to low concentration of dimethoate, an organophosphorus pesticide, was studied. Results show that cell density, protein content, chlorophyll pigment and alkaline phosphatase activity were all increased, which indicates that low concentration dimethoate can accelerate growth of Chlorella vulgaris. (C) 1997 Elsevier Science Ltd.
Resumo:
A new method to test the hole concentration of p-type GaN is proposed, which is carried out by analyzing the spectral response of p-n(+) structure GaN ultraviolet photodetector. It is shown that the spectral response of the photodetector changes considerably with reversed bias. It is found that the difference between photodetector's quantum efficiency at two wavelengths, i.e. 250 and 361 nm, varies remarkably with increasing reversed bias. According to the simulation calculation, the most characteristic change occurs at a reversed voltage under which the p-GaN layer starts to be completely depleted. Based on this effect the carrier concentration of p-GaN can be derived.
Resumo:
We measured the carrier concentration distribution of gradient-doped GaAs/GqAlAs epilayers grown by molecular beam epitaxy before and after annealing at 600 degrees C, using electrochemical capacitance voltage profiling, to investigate the internal variation of transmission-mode GaAs photocathodes arising from the annealing process. The results show that the carrier concentration increased after annealing. As a result, the total band-bending energy in the gradient-doped GaAs emission layer increased by 25.24% after annealing, which improves the pbotoexcited electron movement toward the surface. On the other hand, the annealing process resulted in a worse carrier concentration discrepancy between the GaAs and the GaAlAs, which causes a lower back interface potential barrier, decreasing the amount of high-energy photoelectrons. (C) 2009 Optical Society of America
Resumo:
Gd2O3 thin films were deposited on Si (100) substrates at 650degreesC by a magnetron sputtering system under different Ar/O-2 ratios of 6:1, 4:1 and 2:1. The effect of the oxygen concentration on the properties of oxide thin films was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and capacitance-voltage (C-V)measurement. X-ray diffraction shows that the structure of oxide films changed from the monoclinic Gd2O3 phase to cubic Gd2O3 phase when the oxygen concentration increased. According to C-V measurement, the dielectric constant value of the samples deposited at different Ar/O-2 ratios is about 12. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline nano-grain-boundary multi-doping ZnO-based nonlinear varistors with higher concentration additives have been fabricated by sol-gel and standard solid-state reaction method, of which the best sample has a very high threshold voltage of E-b = 3300 V/mm. The effect of sintering processes, sintering temperature and sintering time, and that of additive concentration of Bi2O3 on E-b of the samples are systematically investigated. The results show that the great merit of sol-gel method is its high threshold voltage obtained by a lower sintering temperature than the solid-state reaction method. The present work also shows that five phases including solid-state sintering, rich Bi liquid phase formation and ZnO as well as other additive dissolution, ZnO grain growth, the secondary phase sufficient formation and evolution have been experienced at different sintering temperatures. The hole type defect and nonhomogeneity of the microstructure will lead to the decrease of threshold voltage, i.e., the grain size and the homogeneity of the material will be important factors and directly affect the characteristic of the varistor. The sintering characteristic and the influence of Bi2O3 content on the threshold voltage are also discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).
Resumo:
We have investigated the optical transitions in Ga1-yInyNxAs1-x/GaAs single and multiple quantum wells using photovoltaic measurements at room temperature. From a theoretical fit to the experimental data, the conduction band offset Q(c), electron effective mass m(e)*, and band gap energy E-g were estimated. It was found that the Q(c) is dependent on the indium concentration, but independent on the nitrogen concentration over the range x=(0-1)%. The m(e)* of GaInNAs is much greater than that of InGaAs with the same concentration of indium, and increases as the nitrogen concentration increases up to 1%. Our experimental results for the m(e)* and E-g of GaInNAs are quantitatively explained by the two-band model based on the strong interaction of the conduction band minimum with the localized N states. (C) 2001 American Institute of Physics.
Resumo:
The concentration of hydroen-indium vacancy complex VInH4 in liquid encapsulated Czochralski undoped and Fe-doped n-type InP has been studied by low-temperature infrared absorption spectroscopy. The VInH4 complex is found to be a dominant intrinsic shallow donor defect with concentrations up to similar to 10(16) cm(-3) in as-grown liquid encapsulated Czochralski InP. The concentration of the VInH4 complex is found to increase with the compensation ratio in good agreement with the proposed defect formation model of Walukiewicz [W. Walukiewicz, Phys. Rev. B 37, 4760 (1998); Appl. Phys. Lett. 54, 2094 (1989)], which predicts a Fermi-level-dependent concentration of amphoteric defects. (C) 1998 American Institute of Physics, [S0003-6951(98)04435-0].