317 resultados para Ion implantation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The lattice damage accumulation in GaAs and Al0.3Ga0.7As/GaAs superlattices by 1 MeV Si+ irradiation at room temperature and 350-degrees-C has been studied. For irradiations at 350-degrees-C, at lower doses the samples were almost defect-free after irradiation, while a large density of accumulated defects was induced at a higher dose. The critical dose above which the damage accumulation is more efficient is estimated to be 2 x 10(15) Si/cm2 for GaAs, and is 5 x 10(15) Si/cm2 for Al0.8Ga0.7As/GaAs superlattice for implantation with 1.0 MeV Si ions at 350-degrees-C. The damage accumulation rate for 1 MeV Si ion implantation in Al0.3Ga0.7As/GaAs superlattice is less than that in GaAs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The composition and microstructure of buried layers of AlN formed by high energy N+ ion implantation into polycrystalline Al have been determined. Both bulk and evaporated thin films of Al have been implanted with 100 and 200 keV N+ ions to doses of up to 1.8 x 10(18)/cm2. The layers have been characterised using SIMS, XTEM, X-ray diffraction, FTIR, RBS and in terms of their microhardness. It is found that, for doses greater than the critical dose, buried, polycrystalline AlN layers are formed with preferred (100) or (002) orientations, which are sample specific. With increasing dose the nitrogen concentration saturates at the value for stoichiometric AlN although the synthesised compound is found to be rich in oxygen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cd in GaAs is an acceptor atom and has the largest atomic diameter among the four commonly-used group-II shallow acceptor impurities (Be, Mg, Zn and Cd). The activation energy of Cd (34.7 meV) is also the largest one in the above four impurities, When Cd is doped by ion implantation, the effects of lattice distortion are expected to be apparently different from those samples ion-implanted by acceptor impurities with smaller atomic diameter. In order to compensate the lattice expansion and simultaneously to adjust the crystal stoichiometry, dual incorporation of Cd and nitrogen (N) was carried out into GaAs, Ion implantation of Cd was made at room temperature, using three energies (400 keV, 210 keV, 110 keV) to establish a flat distribution, The spatial profile of N atoms was adjusted so as to match that of Cd ones, The concentration of Cd and N atoms, [Cd] and [N] varied between 1 x 10(16) cm(-3) and 1 x 10(20) cm(-3). Two type of samples, i.e., solely Cd+ ion-implanted and dually (Cd+ + N+) ion-implanted with [Cd] = [N] were prepared, For characterization, Hall effects and photoluminescence (PL) measurements were performed at room temperature and 2 K, respectively. Hall effects measurements revealed that for dually ion-implanted samples, the highest activation efficiency was similar to 40% for [Cd] (= [N])= 1 x 10(18) cm(-3). PL measurements indicated that [g-g] and [g-g](i) (i = 2, 3, alpha, beta,...), the emissions due to the multiple energy levels of acceptor-acceptor pairs are significantly suppressed by the incorporation of N atoms, For [Cd] = [N] greater than or equal to 1 x 10(19) cm(-3), a moderately deep emission denoted by (Cd, N) is formed at around 1.45-1.41 eV. PL measurements using a Ge detector indicated that (Cd, N) is increasingly red-shifted in energy and its intensity is enhanced with increasing [Cd] = [N], (Cd, N) becomes a dominant emission for [Cd] = [N] = 1 x 10(20) cm(-3). The steep reduction of net hole carrier concentration observed for [Cd]/[N] less than or equal to 1 was ascribed to the formation of (Cd, N) which is presumed to be a novel radiative complex center between acceptor and isoelectronic atoms in GaAs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ErSi1.7 layers with high crystalline quality (chi(min) of Er is 1.5%) have been formed by 90 keV Er ion implantation to a dose of 1.6X10(17)/cm(2) at 450 degrees C using channeled implantation. The perpendicular and parallel elastic strain e(perpendicular to)=-0.94%+/-0.02% and e(parallel to)=1.24%+/-0.08% of the heteroepitaxial erbium silicide layers have been measured with symmetric and asymmetric x-ray reflections using a double-crystal x-ray diffractometer. The deduced tetragonal distortion e(T(XRD))=e(parallel to)-e(perpendicular to)=2.18%+/-0.10%, which is consistent with the value e(T(RBS))2.14+/-0.17% deduced from the Rutherford backscattering and channeling measurements. The quasipseudomorphic growth of the epilayer and the stiffness along a and c axes of the epilayer deduced from the x-ray diffraction are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fe-N films were deposited on Si(100) and GaAs(100) substrates at room temperature by ion beam assisted deposition under various N/ Fe atomic arrival ratio, 0.09, 0.12, 0.15. The results of X-ray diffraction indicated that the film deposited at 0.12 of N/Fe arrival ratio contained a considerable fraction of the Fe16N2 phase which had grown predominantly in the [001] orientation. For the larger N/Fe arrival ratio, a martensite phase with 15 at.% nitrogen was obtained. It was found that a lower deposition temperature (<200 degrees C) was necessary for the formation of the Fe16N2 phase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amorphous SiO2 (a-SiO2) thin films were thermally grown on single-crystalline silicon. These a-SiO2/Si samples were first implanted (C-doped) with 100-keV carbon ion at room temperature (RT) at a dose of 5.0 x 10(17) C-ions/cm(2) and were then irradiated at RT by using 853 MeV Pb ions at closes of 5.0 x 10(11), 1.0 x 10(12), 2.0 x 10(12) and 5.0 x 10(12) Pb-ions/cm(2), respectively. The microstructures and the photoluminescence (PL) properties of these samples induced by Pb ions were investigated using fluorescence spectroscopy and transmission electron microscopy. We found that high-energy Pb-ion irradiation could induce the formation of a new phase and a change in the PL property of C-doped a-SiO2/Si samples. The relationship between the observed phenomena and the ion irradiation parameters is briefly discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work the photoluminescence (PL) character of sapphire implanted with 180 keV Xe and irradiated with 308 MeV Xe ions was studied. The virgin, implanted and irradiated samples were investigated by PL and Fourier transform infrared (FTIR) spectra measurements. The obtained PL spectra showed the maximum emission bands at 2.75, 3.0 and 3.26 eV for the implanted fluence of 1.0 x 10(15) ions/cm(2) and at 2.4 and 3.47 eV for the irradiated fluence of 1.0 x 10(13) ions/cm(2). The FTIR spectra showed a broaden absorption band between 460 and 630 cm(-1), indicating that strong damaged region formed in Al2O3.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Defect engineering for SiO2] precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (STMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120keV 8.0 x 10(16) cm(-2) O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison, another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amorphous SiO2 thin films with about 400-500 nm in thickness were thermally grown on single crystalline silicon. These SiO2/Si samples were firstly implanted at room temperature (RT) with 100 keV carbon ions to 2.0 x 10(17),5.0 X 10(17) or 1.2 x 10(18) ions/cm(2), then irradiated at RT by 853 MeV Pb ions to 5.0 x 10(11), 1.0 X.10(12) 2.0 x 10(12) or 5.0 x 10(12) ions/cm(2), respectively. The variation of photoluminescence (PL) properties of these samples was analyzed at RT using a fluorescent spectroscopy. The obtained results showed that Pb-ion irradiations led to significant changes of the PL properties of the carbon ion implanted SiO2 films. For examples, 5.0 x 10(12) Pb-ions/cm(2) irradiation produced huge blue and green light-emitters in 2.0 x 10(17) C-ions/cm(2) implanted samples, which resulted in the appearance of two intense PL peaks at about 2.64 and 2.19 eV. For 5.0 x 10(17) carbon-ions/cm(2) implanted samples, 2.0 x 10(12) Pb-ions/cm(2) irradiation could induce the formation of a strong and wide violet band at about 2.90 eV, whereas 5.0 x 10(12) Pb-ionS/cm(2) irradiation could,create double peaks of light emissions at about 2.23 and 2.83 eV. There is no observable PL peak in the 1.2 x 10(18) carbon-ions/cm(2) implanted samples whether it was irradiated with Pb ions or not. All these results implied that special light emitters could be achieved by using proper ion implantation and irradiation conditions, and it will be very useful for the synthesis of new type Of SiO2-based light-emission materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present work the photoluminescence (PL) character of sapphire implanted with 110-keV He, Ar or Ne ions and subsequently irradiated with 230-MeV Pb was studied. The implantation was performed at 320 and 600 K using fluences from 5.0 x 10(16) to 2.0 x 10(17) ions/cm(2). The Pb ion irradiation was carried out at 320 K. The obtained PL spectra showed peaks at 375, 413 and 450 nm with maximum intensity at an implantation fluence of 5.0 x 10(16) ions/cm(2) and a new peak at 390 nm appeared in the He-implanted and subsequently Pb-irradiated samples. Infrared spectra showed a broadening of the absorption band between 460 and 510 nm indicating strongly damaged regions formed in the Al2O3 samples. A possible PL mechanism is discussed.