730 resultados para GAAS(100)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphology evolution of high-index GaAs(331)A surfaces during molecular beam epitaxy (MBE) growth has been investigated in order to achieve regularly distributed step-array templates and fabricate spatially ordered low-dimensional nano-structures. Atomic force microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature. By using the step arrays formed on GaAs(331)A surfaces as the templates, we have fabricated highly ordered InGaAs nanowires. The improved homogeneity and the increased density of the InGaAs nanowires are attributed to the modulated strain field caused by vertical multi-stacking, as well as the effect of corrugated surface of the template. Photoluminescence (PL) tests confirmed remarkable polarization anisotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A1GaAs/1nGaAs high electron mobility transistors (HEMTs) and AlAs/GaAs resonant tunnelling diodes (RTDs) are integrated on GaAs substrates. Molecular beam epitaxy is used to grow the RTD on the HEMT structure. The current-voltage characteristics of the RTD and HEMT are obtained on a two-inch wafer. At room temperature, the peak-valley, current ratio and the peak voltage are about 4.8 and 0.44 V, respectivcly The HEMT is characterized by a, gate length of 1 mu m, a, maximum transconductance of 125 mS/mm, and a threshold voltage of -1.0 V. The current-voltage, characteristics of the series-connected RTDs are presented. Tire current-voltage curves of the parallel connection of one RTD and one HEMT are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtained the high mobility Of mu(2K) = 1.78 x 10(6) cm(2)/V . s in Si-doped GaAs/AlGaAs two-dimensional electron gas (2DEG) structures. After the sample was illuminated by a light-emitting diode in magnetic fields up to 6 T at T = 2K, we did observe the persistent photoconductivity effect and the electron density increased obviously. The electronic properties of 2DEG have been studied by Quantum-Hall-effect and Shubnikov-de Haas (SdH) oscillation measurements. We found that the electron concentrations of two subbands increase simultaneity with the increasing total electron concentration, and the electron mobility also increases obviously after being illuminated. At the same time, we also found that the electronic quantum lifetime becomes shorter, and a theoretical explunation is given through the widths of integral quantum Hall plateaus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of rapid thermal annealing on photoluminescence (PL) properties of InGaAs, InGaNAs, InGaAsSb, and InGaNAsSb quantum wells (QWs) grown by molecular-beam epitaxy was systematically investigated. Variations of PL intensity and full width at half maximum were recorded from the samples annealed at different conditions. The PL peak intensities of InGaAs and InGaNAs QWs initially increase and then decrease when the annealing temperature increased from 600 to 900 degrees C, but the drawing lines of InGaAsSb and InGaNAsSb take on an "M" shape. The enhancement of the PL intensity and the decrease of the full width at half maximum in our samples are likely due to the removal of defects and dislocations as well as the composition's homogenization. In the 800-900 degrees C high-temperature region, interdiffusion is likely the main factor influencing the PL intensity. In-N is easily formed during annealing which will prevent In out diffusion, so the largest blueshift was observed in InGaAsSb in the high-temperature region. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the InAs/GaAs quantum-dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS) in combination with atomic force microscopy and photoluminescence. One transition related to the light hole in the WL has been observed clearly in RDS, from which its transition energy and in-plane optical anisotropy (OA) are determined. The evolution of WL with the InAs dot formation and ripening has been discussed. In addition, the remarkable changes in OA at the onsets of the dot formation and ripening have been observed, implying the mode transitions of atom transport between the WL and the dots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the mutual passivation of shallow donor and isovalent N in GaAs. We find that all the donor impurities, Si-Ga, Ge-Ga, S-As, and Se-As, bind to N in GaAsN, which has a large N-induced band-gap reduction relative to GaAs. For a group-IV impurity such as Si, the formation of the nearest-neighbor Si-Ga-N-As defect complex creates a deep donor level below the conduction band minimum (CBM). The coupling between this defect level with the CBM pushes the CBM upwards, thus restoring the GaAs band gap; the lowering of the defect level relative to the isolated Si-Ga shallow donor level is responsible for the increased electrical resistivity. Therefore, Si and N mutually passivate each other's electrical and optical activities in GaAs. For a group-VI shallow donor such as S, the binding between S-As and N-As does not form a direct bond; therefore, no mutual passivation exists in the GaAs(S+N) system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of nonradiative recombination on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by time-resolved photoluminescence under various excitation intensities. It is found that the PL decay process strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual nonexponential behavior and show a convex shape. By introducing a new parameter of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. The cw PL data further demonstrate the nonradiative recombination effect on the optical properties of GaInNAs/GaAs quantum wells. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAs was deposited by molecular beam epitaxy (MBE) on a GaAs substrate with an intentional temperature gradient from centre to edge. Two-dimensional (2D) to three-dimensional (3D) morphology evolution was found along the direction in which the substrate temperature was decreasing. Quantum dots (QDs) with density as low as similar to 8 x 10(6) cm(-2) were formed in some regions. We attribute the morphological evolution to the temperature-dependent desorption of deposited indium and the intermixing between deposited indium and gallium from the buffer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband superluminescent diodes are fabricated by using InAs/GaAs self-assembled quantum dots as an active region. The devices exhibited properties of 110 run bandwidth with the centre of 1.1 mu m and above 30 mW output under pulse injection at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasi-continuous-wave operation of GaAs/AlGaAs quantum-cascade lasers with high average optical power is demonstrated. Double X-ray diffraction has been used to investigate the quality of the epitaxial material. The compositional gradients and the interface quality are controlled effectively. The corrected average power of per facet about 17 mW and temperature tuning coefficient of the gain peak about 0.91 nm/K from 83 K to 140 K is achieved in pulse operation. Best value of threshold current density is less than 3.0 kA/cm(2) at 83 K. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various low-temperature (LT) ultra-thin buffer layers have been fabricated on the GaAs (001) substrate. The buffer layer is decoupled from the host substrate by introducing low-temperature defects. The 400 nm In0.25Ga0.75As films were grown on these substrates to test the 'compliant' effects of the buffer layers. Atomic force microscopy, photoluminescence, double crystal x-ray diffraction and transmission electron microscopy were used to estimate the quality of the ln(0.25)Ga(0.75)As layer. The measurements indicated that the misfit strains in the epilayer can be accommodated by the LT ultra-thin buffer layer. The strain accommodation effects of the LT defects have been discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled InAs/GaAs quantum dots covered by the 1-nm InxAl(1-x)As (x = 0.2,0.3) and 3-nm In0.2Ga0.8As combination strain-reducing layer are fabricated, whose height can take up to 30-46 nm. The luminescence emission at a long-wavelength of 1.33 mum and the energy separation between the ground and the first-excited state of 86 meV are observed at room temperature. Furthermore, comparative study proves that the energy separation can increase to 91 meV by multiple stacking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and optical properties of GaAsSb/GaAs quantum wells (QWs) and strain-compensated GaAsP/GaAs/GaAsSb/GaAs/GaAsP QWs grown on a GaAs substrate by molecular beam epitaxy are investigated using high-resolution x-ray diffraction and photoluminescence (PL) measurements. We demonstrated that the insertion of tensile GaAsP layers into the active region of GaAsSb/GaAs QWs effectively improves the structural and optical quality. Even the Sb composition is as high as 0.39. The PL spectra at 11 K and room temperature indicate that the PL peak of strain-compensated QWs has a narrower linewidth and higher intensity in comparison to the sample without strain compensation. The results of PL peak blueshift with increasing excitation show the strain-compensated GaAsSb/GaAs interface characteristic of type-I band alignment. (C) 2003 American Institute of Physics.