624 resultados para Molecular Beam Epitaxy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Sb-mediated growth technique is developed to deposit Ge quantum dots (QDs) of small size, high density, and foe of dislocations. These QDs were grown at low growth temperature by molecular beam epitaxy. The photoluminescence and absorption properties of these Ge QDs suggest an indirect-to-direct conversion, which is in good agreement with a theoretical calculation. (C) 1998 American Institute of Physics. [S0003-6951(98)00420-3].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-size, high-density, and vertical-ordering Ge quantum dots are observed in strained Si/Ge short-period superlattices grown on Si(001) at low growth temperature by molecular-beam epitaxy. The photoluminescence (PL) peak position, the strong PL at room temperature, and the high exciton binding energy suggest an indirect-to-direct conversion of the Ge quantum dots. This conversion is in good agreement with the theoretical prediction. The characteristic of absorption directly indicates this conversion. The tunneling of carriers between these quantum dots is also observed. [S0163-1829(98)03515-2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variable-temperature reflectance difference spectroscopy study of GaAs grown by molecular beam epitaxy at low-temperature GaAs (LT-GaAs) shows that the Fermi level is mostly determined by the point defects in samples annealed at below 600 degrees C and can be shifted by photoquenching the defects. The Fermi level is otherwise almost temperature independent, leading to an estimated width of the defect band of 150 meV in the as-grown sample, For LT-GaAs annealed at 850 degrees C, the Fermi level is firmly pinned, most Likely by the As precipitates. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality InGaAs/InAlAs/InP high-electron-mobility transistor (HEMT) structures with lattice-matched or pseudomorphic channels have been grown by molecular-beam epitaxy (MBE). The purpose of this work is to enhance the channel conductivity by changing the epitaxial structure and growth process. With the use of pseudomorphic step quantum-well channel, the highest channel conductivity is achieved at x = 0.7, the corresponding electron mobilities are as high as 12300 (300 K) and 61000 cm(2)/V.s (77 K) with two-dimensional electron gas (2DEG) density of 3.3 x 10(12) cm(-2). These structures are comprehensively characterized by Hall measurements, photoluminescence, double crystal X-ray diffraction and transmission electron microscopy. Strong room-temperature luminescence is observed, demonstrating the high optical quality of the samples. We also show that decreasing the In composition in the InyAl1-yAs spacer is very effective to increase the 2DEG density of PHEMT structures. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs layers were grown on GaAs by molecular beam epitaxy (MBE) at substrate temperature 450 and 480 degrees C, and the surface morphology was studied with scanning electron microscopy (SEM). We have observed a high density of hexagonal deep pits for samples grown at 450 degrees C, however, the samples grown at 480 degrees C have smooth surface. The difference of morphology can be explained by different migration of cations which is temperature dependent. Cross-sectional transmission electron microscopy (XTEM) studies showed that the growth temperature also affect the distributions of threading dislocations in InAs layers because the motion of dislocations is kinetically limited at lower temperature. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the epitaxial growth and the microstructure of cubic GaN. The layers are deposited by plasma-assisted molecular beam epitaxy on GaAs and Si substrates. Despite the extreme lattice mismatch between these materials, GaN grows in the metastable cubic phase with a well-defined orientation-relationship to the GaAs substrate including a sharp heteroboundary. The preference of the metastable phase and its epitaxial orientation originates in the interface structure which is found to be governed by a coincidence site lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of GaAs/InAs/GaAs samples were studied by double crystal X-ray diffraction and the X-ray dynamic theory was used to analyze the X-ray diffraction results. As the thickness of InAs layer exceeds 1.7 monolayer, 3-dimensional InAs islands appear. Pendellosung fringes shifted. A multilayer structure model is proposed to describe the strain status in the InAs islands of the sample and a good agreement is obtained between the experimental and theoretical curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present the growth of InAs rings by droplet epitaxy. A complete process from the rings formation to their density saturation has been demonstrated: A morphological evolution with the varying of the indium deposition amount has been, clearly observed. Our results indicate that there, is a critical deposition amount (similar to 1.1 ML) for the indium to form InAs dots before droplets form; there is also a critical deposition amount (similar to 1.4 ML) to form InAs ring, but it is caused by the formation of droplets as the deposition amount increases. The density of the rings saturates when the deposition amount exceeds similar to 3.3 ML; because the adsorbed indium atoms block sites for further adsorption and the following supplied In only contributes to the size increase of In droplets. Still, as the In deposition amount increases, we can find coupled quantum rings. Moreover, the wetting layer properties of these structures are studied by reflectance difference spectroscopy, which shows a complicated evolution with the In amount. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, InAs quantum dots (QDs) grown on a linear graded InGaAs metamorphic buffer layer by molecular beam epitaxy have been investigated. The growth of the metamorphic buffer layers was carefully optimized, yielding a smooth surface with a minimum root mean square of roughness of less than 0.98 nm as measured by atomic force microscopy (AFM). InAs QDs were then grown on the buffer layers, and their emission wavelength at room-temperature is 1.49 mu m as measured by photoluminescence (PL). The effects of post-growth rapid thermal annealing (RTA) on the optical properties of the InAs QDs were investigated. After the RTA, the PL peak of the QDs was blue-shifted and the full width at half maximum decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performing an event-based continuous kinetic Monte Carlo (KMC) simulation, We investigate the growth conditions which are important to form semiconductor quantum dot (QD) in molecular beam epitaxy (MBE) system. The simulation results provide a detailed characterization of the atomic kinetic effects. The KMC simulation is also used to explore the effects of periodic strain to the epitaxy growth of QD. The simulation results are in well qualitative agreement with experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology evolution of high-index (331)A surfaces during molecular beam epitaxy (MBE) growth have been investigated in order to uncover their unique physic properties and fabricate spatially ordered low dimensional nanostructures. Atomic Force Microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature in conventional MBE. However, this situation is reversed in atomic hydrogen-assisted MBE, indicating that step bunching is partly suppressed. We attribute this to the reduced surface migration length of Ga adatoms with atomic hydrogen. By using the step arrays formed on GaAs (331)A surfaces as the templates, we fabricated laterally ordered InGaAs self-aligned nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface morphology evolution of strained InAs/GaAs(331)A films was systematically investigated in this paper. Under As-rich conditions, InAs elongated islands aligned along [1 (1) over bar0] are formed at a substrate temperature of 510 degrees C. We explained it as a result of the anisotropic diffusion of adatoms. Under In-rich conditions, striking change has occurred with respect to the surface morphology of the InAs layers. Instead of anisotropic InAs elongated islands, unique island-pit pairs randomly distributed on the whole surface were observed. Using cooperative nucleation mechanisms proposed by Jesson et al. [Phys. Rev. Lett. 77, 1330 (1996)], we interpret the resulting surface morphology evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al0.3Ga0.7N/AlN/GaN HEMT structures with significantly high mobility have been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. At room temperature (RT) a Hall mobility of 2104 cm(2)/Vs and a two-dimensional electron gas (2DEG) density of 1.1x10(13) cm(-2) are achieved, corresponding to a sheet resistance of 277.8 Omega/sq. The elimination of V-shaped defects were observed on Al0.3Ga0.7N/AlN/GaN HEMT structures and correlated with the increase of 2DEG mobility. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-organized InAs/In0.52Al0.48As nanostructure were grown on InP (001) using molecular beam epitaxy (MBE). The nanostructure has been studied using transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The edge dislocations with the Burgers vector b = ([001]/2) and extending along the [$(110) over bar $] direction are observed. The results show that in the region near an edge dislocation, no InAs wires were formed, while in the regions free of dislocation, wire-like nanostructures were formed. The mechanisms for the formation of the [001]/2 edge dislocations were discussed.