582 resultados para INAS QUANTUM DOTS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-assembled quantum dots and wires were obtained in the InxGa1-xAs/GaAs and InAs/In0.52Al0.48As/lnP systems, respectively, using molecular beam epitaxy (MBE). Uniformity in the distribution, density, and spatial ordering of the nanostructures can be controlled to some extent by adjusting and optimizing the MBE growth parameters. Laser devices and superluminescent diodes were fabricated with InAs/GaAs self-assembled quantum dots as the active region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Under selective photo-excitation, the capacitance response of internal tunnelling coupling in quantum-dots-imbedded heterostructures is studied to clarify the electronic states and the number densities of electrons filling in the quantum dots (QDs). The random nature for both optical transitions and the filling in a QD assembly makes highly resolved capacitance peaks appear in the C-V characteristic after turning off the photo-excitation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A systematic investigation of the strain distribution of self-organized, lens-shaped quantum dot in the case of growth direction on (001) substrate was presented. The three-dimensional finite element analysis for an array of dots was used for the strain calculation. The dependence of the strain energy density distribution on the thickness of the capping layer was investigated in detail when the elastic characteristics of the matrix material were anisotropic. It is shown that the elastic anisotropic greatly influences the stress, strain, and strain energy density in the quantum dot structures. The anisotropic ratio of the matrix material and the combination with different thicknesses of the capping layer, may lead to different strain energy density minimum locations on the capping layer surface, which can result in various vertical ordering phenomena for the next layer of quantum dots, i.e. partial alignment, random alignment, and complete alignment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the intersubband absorption for spatially ordered and non-ordered quantum dots (QDs). It is found that the intersubband absorption of spatially ordered QDs is much stronger than that of non-ordered QDs. The enhanced absorption is attributed to the improved size uniformity concurrent with the spatial ordering for the growth condition employed. For the FTIR measurement under normal incidence geometry, using a undoped sample as reference can remove the interference effect due to multiple reflections. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some important parameters, such as gain, 3 dB bandwidth and threshold current of 1.3 mu m quantum dot vertical-cavity surface-emitting laser (QD VCSEL) are theoretically investigated. Some methods are developed to improve the VCSEL's modulation response. Significant improvement are prediced for p-type modulation doping. In connection with the threshold characteristic, we found that a structure with short cavity, multilayer quantum dots stack, p-type modulation doping and double intracavity contact on an un-doped DBR is much better suited to high speed quantum dot VCSELs. The parasitic effects of the VCSEL are,analyzed and the influence of packaging of the VCSEL on its modulation responds is analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a structure of (In, Ga)As/GaAs quantum dots which are vertically correlated and laterally aligned in a hexagonal way thus forming three-dimensionally ordered arrays. The growth pathway is based on a mechanism of self-assembly by strain-mediated multilayer vertical stacking on a planar GaAs(100) substrate, rather than molecular-beam epitaxy on a prepatterned substrate. The strain energy of lateral island-island interaction is minimum for the arrangement of hexagonal ordering. However, realization of hexagonal ordering not only depends on a complicated trade-off between lateral and vertical island-island interaction but is also related to a delicate and narrow growth kinetics window.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on a multiparticle-state stimulated Raman adiabatic passage approach, a comprehensive theoretical study of the ultrafast optical manipulation of electron spins in quantum wells is presented. In addition to corroborating experimental findings [Gupta , Science 292, 2458 (2001)], we improve the expression for the optical-pulse-induced effective magnetic field, in comparison with the one obtained via the conventional single-particle ac Stark shift. Further study of the effect of hole-spin relaxation reveals that, while the coherent optical manipulation of electron spin in undoped quantum wells would deteriorate in the presence of relatively fast hole-spin relaxation, the coherent control in doped systems can be quite robust against decoherence. The implications of the present results on quantum dots will also be discussed. (c) 2005 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low-indium-content self-assembled InGaAs/GaAs quantum dots (SAQD) were grown using solid-source molecular beam epitaxy (MBE) and investigated by atomic force microscopy and photoluminescence (PL) spectroscopy. Silicon, which was doped at different quantum dot (QD) growth stages, markedly increased the density of QD. We obtained high density In0.35Ga0.65As/GaAs(001) quantum dots of 10(11)/cm(2) at a growth temperature of 520degreesC. PL spectra and distribution statistics show the high quality and uniformity of our silicon-doped samples. The density increment can be explained using the lattice-hardening mechanism due to silicon doping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A microcavity structure, containing self-assembled InGaAs quantum dots, is studied by angle-resolved photoluminescence (PL) spectroscopy. A doublet with the splitting energy of 0.5-1.5 nm appears when the detection angle is larger than 35degrees. This doublet is identified as mode splitting (not the Rabi splitting) by polarization measurements. We find that it is the considerable deviation of the cavity-mode frequency from the central frequency of the stop band that makes the TE and TM cavity modes split more discernibly. The inhomogeneous broadening of quantum dots gives the TE and TM cavity modes a chance to show up simultaneously in the PL spectra. (C) 2003 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We derive the modified rate equations for an Aharonov-Bohm (AB) ring with two transversely coupled quantum dots (QD's) embedded in two arms in the presence of a magnetic field. We find that the interdot coupling between the two QD's can cause a temporal oscillation in electron occupation at the initial stage of the quantum dynamics, while the source-drain current decays monotonically to a stationary value. On the other hand, the interdot coupling equivalently divides the AB ring into two coupled subrings. That also destroys the normal AB oscillations with a period of 2pi, and generates new and complex periodic oscillations with their periods varying in a linear manner as the ratio between two magnetic fluxes (each penetrates one AB subring) increases. Furthermore, the interference between two subrings is also evident from the observation of the perturbed fundamental AB oscillation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel analog-computation system using a quantum-dot cell network is proposed to solve complex problems. Analog computation is a promising method for solving a mathematical problem by using a physical system analogous to the problem. We designed a novel quantum-dot cell consisting of three-stacked. quantum dots and constructed a cell network utilizing the nearest-neighbor interactions between the cells. We then mapped a graph 3-colorability problem onto the network so that the single-electron configuration of the network in the ground state corresponded to one of the solutions. We calculated the ground state of the cell network and found solutions to the problems. The results demonstrate that analog computation is a promising approach for solving complex problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-assembled Ge islands were grown on Si (1 0 0) substrate by Si2H6-Ge molecular beam epitaxy. Subjected to a chemical etching, it is found that the size and shape (i.e. ratio of height to base width) of Ge islands change with etching time. In addition, the photoluminescence from the etched Ge islands shifted to the higher energy side compared to that of the as-deposited Ge islands. Our results demonstrated that chemical etching can be a way to change the size and shape of the as-deposited islands as well as their luminescence property. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated properties of intraband absorption in In-x Ga1-xAs quantum dots (QDs) superlattice. Energy levels in conduction band in QDs were calculated for a cone-shaped quantum dot associated with coupling between QDs in the framework of the effective-mass envelope-function theory. Theoretical results demonstrated that energy levels in conduction band were greatly affected by the vertical coupling between quantum dots, which can be used to modify transition wavelength by adjusting the space layer thickness. Intraband transition is really sensitive to normal incidence and the absorption peak intensity is dependent on the polarization. A satisfying agreement is found between theoretical and experimental values. This result opens up prospects for the fabrication of QDs infrared detectors, which work at atmospheric windows.