641 resultados para SIO2
Resumo:
Laser-induced damages to TiO2 single layers and TiO2/SiO2 high reflectors at laser wavelength of 1064 nm, 800 run, 532 urn, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO2 coatings are mainly thermally by damaged at long pulse (tau >= 220 ps). The damage shows ablation feature at 50 fs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd: YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LID T of Al2O3 thin film.
Resumo:
4H-silicon carbide (SiC) metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with Al2O3/SiO2 (A/S) films employed as antireflection/passivation layers have been demonstrated. The devices showed a peak responsivity of 0.12 A/W at 290 nm and maximum external quantum efficiency of 50% at 280 nm under 20 V electrical bias, which were much larger than conventional MSM detectors. The redshift of peak responsivity and response restriction effect were found and analyzed. The A/S/4H-SiC MSM photodetectors were also shown to possess outstanding features including high UV to visible rejection ratio, large photocurrent, etc. These results demonstrate A/S/4H-SiC photodetectors as a promising candidate for OEIC applications. (C) 2008 American Institute of Physics.
Resumo:
A high laser-induced damage threshold (LIDT) TiO2/SiO2 high reflector (HR) at 1064 nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064 nm with a 12 ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO2 layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR. (C) 2008 American Institute of Physics.
Resumo:
Al2O3/SiO2 films have been deposited as UV antireflection coatings on 4H-SiC by electron-beam evaporation and characterized by reflection spectrum, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The reflectance of the Al2O3/SiO2 films is 0.33% and 10 times lower than that of a thermally grown SiO2 single layer at 276 nm. The films are amorphous in microstructure and characterize good adhesion to 4H-SiC substrate. XPS results indicate an abrupt interface between evaporated SiO2 and 4H-SiC substrate free of Si-suboxides. These results make the possibility for 4H-SiC based high performance UV optoelectronic devices with Al2O3/SiO2 films as antireflection coatings. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine anti-reflection coatings on 4H-SiC-based UV optoelectronic devices. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
基于严格耦合波理论建立了梯形介质膜光栅的衍射机理模型,利用该模型讨论了底角为70°的梯形介质膜光栅-1级的衍射行为。通过对梯形介质膜光栅的占空比、槽深和剩余厚度的优化,设计了应用于1053 nm和51.2°角度入射的梯形介质膜光栅。对于顶层为HfO2的介质膜光栅,当槽深为200 nm,剩余厚度为100 nm,占空比为0.35时,其衍射效率优于99.5%,而对于顶层为SiO2的梯形光栅,为获得99.5%的衍射效率,其槽深为800 nm,剩余厚度为320 nm。而且,获得同样的衍射效率,顶层为HfO2的梯形光栅具有更宽的光谱特性。数值计算表明,严格耦合波理论模型对梯形介质膜光栅衍射效率的计算具有很好的收敛性和稳定性。
Resumo:
提出了一种用于提高介质减反膜的损伤阈值的新的方法,在H2.5L (H:HfO2, L:SiO2)的膜层与基底之间引入4个1/4光学厚度的SiO2薄膜,发现抗激光损伤阈值提高了50%,并且保持1064nm处的反射率低于0.09%。本文分析了造成这一提高的机制,一定厚度的氧化硅过渡层的引入是一种提高介质减反膜的损伤阈值的灵活有效的方法。
Resumo:
精确的光学常数对于设计和制备高品质的光学薄膜非常重要,尤其是那些光学性能对折射率变化敏感的薄膜。SiO_2是一种常用的低折射率材料,因与常用基底折射率相近使其准确拟合有一定难度。实验通过离子束溅射制备了SiO_2单层膜。考虑测量时的误差和基底折射率的影响,采用透射率包络和反射率包络得到了SiO_2的折射率,并用所得折射率进行反演来对这两种途径在实际测量拟合过程中的准确性进行比对。分析表明,剩余反射率在实际的测量过程中误差更小,直接用测量镀膜前后基片的剩余反射率值可以更简便更准确地得到SiO_2的折射率,能达到10~(-2)的精度。
Resumo:
A model of plasma formation induced by UV nanosecond pulselaser interaction with SiO2 thin film based on nanoabsorber is proposed. The model considers the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO2 thin film, foreign inclusion which absorbs a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and consequently, the transformation of the initial transparent matrix into an absorptive medium around the inclusion, thus facilitates optical damage. Qualitative comparison with experiments is also provided. (C) 2008 Optical Society of America.
Resumo:
A series or Ta2O5 films with different SiO2 additional layers including overcoat, undercoat and interlayer was prepared by electron beam evaporation under the same deposition process. Absorption of samples was measured using the surface thermal lensing (STL) technique. The electric field distributions of the samples were theoretical predicted using thin film design software (TFCalc). The laser induced damage threshold (LIDT) was assessed using an Nd:YAG laser operating at 1064 nm with a pulse length of 12 ns. It was found that SiO2 additional layers resulted in a slight increase of the absorption, whereas they exerted little influence on the microdefects. The electric field distribution among the samples was unchanged by adding an SiO2 overcoat and undercoat, yet was changed by adding an interlayer. SiO2 undercoat. The interlayer improved the LIDT greatly, whereas the SiO2 overcoat had little effect on the LIDT. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO2/SiO2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N-2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
用辉光放电质谱法和二次离子质谱仪测定了两种HfO2材料及它们相应的单层膜中的杂质含量,结果发现,无论是在体材料中还是在用电子束蒸发技术沉积的材料单层薄膜中,ZrO2都是这两种HfO2材料中最主要的杂质。而且,这两种HfO2材料中Zr含量的差别远远大于Ti、Fe含量的差别,这说明Zr含量的差别正是引起两种HfO2膜层光学性能差别的原因。用这两种不同纯度的HfO2材料与同一纯度的SiO2材料组合,沉积形成266nm的紫外反射镜,实验结果表明这两种反射镜的反射率分别在99.85% 和 99.15%左右。这个结果与依据单层膜得出的光学常数所设计的结果符合的很好。
Resumo:
Influence of ZrO2 in HfO2 on the reflectance of HfO2/SiO2 multilayer at 248 nm was investigated. Two kinds of HfO2 with different ZrO2 content were chosen as high refractive index material and the same kind of SiO2 as low refractive index material to prepare the mirrors by electron-beam evaporation. The impurities in two kinds of HfO2 starting coating materials and in their corresponding single layer thin films were determined through glow discharge mass spectrum (GDMS) technology and secondary ion mass spectrometry (SIMS) equipment, respectively. It showed that between the two kinds of HfO2, either the bulk materials or their corresponding films, the difference of ZrO2 was much larger than that of the other impurities such as Ti and Fe. It is the Zr element that affects the property of thin films. Both in theoretical and in experimental, the mirror prepared with the HfO2 starting material containing more Zr content has a lower reflectance. Because the extinction coefficient of zirconia is relatively high in UV region, it can be treated as one kind of absorbing defects to influence the optical property of the mirrors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The thermal stability of electron beam deposited TiO2 monolayers and TiO2/SiO2 high reflectors (HR) during 300 to 1100 degrees C annealing is studied. It is found that the optical loss of film increases with the increase in annealing temperature, due to the phase change, crystallisation and deoxidising of film. Scattering loss dominates the optical property degradation of film below 900 degrees C, while the absorption is another factor at 1100 degrees C. The increase in refractive index and decrease in physical thickness of TiO2 layer shift the spectra of HR above 900 degrees C. The possible crack mechanism on the surface of HR during annealing is discussed. Guidance for application on high temperature stable optical coatings is given.