601 resultados para Al2O3
Resumo:
酸催化剂可以用来催化烃类裂解、重整、异构、烯烃水和、烷基化和酯化等重要化学反应,在石油炼制和石油化工领域有极其广泛的应用。与传统液体酸相比,新型固体酸催化剂具有容易与反应物和产物分离、易再生、不腐蚀反应器、环境污染少等优点,因此研究开发环境友好的新型固体酸催化剂成为国际上催化领域研究的热点。本论文研究新型固体酸催化剂的酸强度和延长催化剂使用寿命的方法,具有很高的工业实用价值和理论意义。 研究了固体酸催化剂在正己烷异构化和异丁醇脱水这两个反应的催化活性,结果显示:1)复合超强酸催化剂,2)Hβ及其负载催化剂,3)负载杂多酸,4)ZrO2·Bi2O3、ZrO2·CaO四类催化剂酸强度较高且强度大小为:1>2≈3>4。氢溢流的引入提高了Pt-SO42-/ ZrO2催化剂在反应中的催化活性,一定程度上弥补了酸强度的不足,也使一些原本没活性的催化剂有了一定的活性,如MOO3催化剂。 研究了异丁烷在12wt%V2O5/γ-Al2O3催化剂上脱氢制异丁烯的反应和异丁烯在50wt%HSiW/SiO2、Amberlyst-15和Amberlyst-35树脂催化剂上的迭代反应,均获得了较好的催化活性。 首次将催化剂表面的疏油性应用在酸催化领域,在硅胶负载的钨硅酸中掺杂不同含量聚四氟乙烯制备出具有一定疏油性的催化剂,用异丁烯迭代反应作为探针反应着重研究了催化剂表面的适当疏油性对催化剂的寿命和产物选择性的影响。结果显示催化剂表面的疏油性不仅提高了C8 =的选择性并且有效延长催化剂寿命。这主要是由于催化剂表面具有适当的疏油性,反应的中间产物C8=易于从具有疏油性的表面脱附,减少了C8=继续在催化剂表面进行连续反应生成C12=和C16=的机会,因此提高了C8=的选择性。这可能促进了更高的产物选择性,低的积炭量和较长的催化剂使用寿命。 研究了催化剂表面的疏水疏油性在醋酸与正丁醇的酯化反应中的应用。结果显示,当酯化反应产物为液相时,催化剂表面的疏水疏油性非常有利于产物从催化剂表面脱附,能有效提高正丁醇的转化率。 关键词:酸强度,钨硅酸,聚四氟乙烯,疏油性,寿命
Resumo:
己内酰胺是一种重要的有机化工原料。采用环己酮肟的气相Beckmann重排的方法制己内酰胺可以解决传统的液相工艺中存在的副产硫酸胺、腐蚀设备和污染环境等问题。本研究的目的是开发出适合环己酮肟的气相Beckmann重排的固体酸催化新工艺。 首先,本工作用同位素标记的方法研究了Beckmann重排在固体酸B2O3/γ-Al2O3和TS-1上的反应机理。同位素标记后的产品采用质谱测量。通过与H218O交换氧,发现环己酮肟与H218O的交换在B2O3/γ-Al2O3和TS-1只能进行到一定程度,这暗示固体酸上腈中间体的解离不如经典的机理完全。提出了解离度(α)的概念,其定义为解离了中间体腈与总中间体腈之比。通过拟合实验数据和同位素标记的产品的计算公式,获得了B2O3/γ-Al2O3和TS-1上α 值分别为0.199和0.806的结果。 其次,采用对氧化铝表面合适氟化的方法,对氟化的氧化铝的性能进行研究。发现氧化铝表面氟化可以改善Beckmann重排的性能。氧化铝表面氟化可以消除其表面碱性位,说明了催化剂表面碱性位不利于Beckmann重排。而完全氟化的氧化铝的选择性不如某些固体酸如负载B2O3和Silicalite-1,暗示着表面酸强度也影响催化剂的选择性。同时,我们对适合气相Beckmann重排的催化剂进行了简单的筛选。发现一种稀土焦磷酸盐有可能是适合此反应的催化剂。 再次,研究了稀土焦磷酸盐催化剂上气相Beckmann重排。通过对一些稀土磷酸进行XRD,FT-IR,NH3-TPD和水接触角等表征,发现这类催化剂上表面的弱酸位以及合适的表面疏水是它们具有较好性能的原因。 再次,对焦磷酸铈催化剂的合成以及反应氛围进行了优化。发现优化的反应氛围为催化剂在pH在3~4时沉淀,在500~550度焙烧,在~350度反应,载气~80ml/min,空速在0.43h-1时反应,能保持转化率在98%以上,选择性在70%以上,8小时不失活。 最后,采用P123作为模板剂合成了一种新型的中孔稀土磷酸盐,这种稀土磷酸盐具有无序的虫洞形结构。应用这种新型的中孔稀土磷酸盐于酚类甲醇氧烷基化获得了较好的结果。与不加表面活性剂的材料相比,这种中孔稀土磷酸盐在低温下具有更大的活性并且其选择性不受损失。认为这种中孔的形态对催化性能具有好的影响。
Resumo:
AAO模板具有高度有序的纳米孔阵列,其孔径可以在5一200nm范围内调节,利用AAO模板进行纳米组装已成为纳米结构材料组装的重要技术之一。目前,采用该技术已经制备出了金属、半导体、碳、导电高分子以及其它材料构成的纳米管、纳米线、纳米纤维、电缆等纳米结构单元和有序纳米阵列材料,同时,研究了它们的光、电、磁和催化等特性及其在光学材料、铿电池的电极材料、垂直磁性记录材料和光催化剂等方面的潜在应用。然而,有关稀土发光材料的AAO模板合成及其性质还鲜见报道。本论文采用二次阳极氧化技术制备出了具有高度有序纳米阵列孔的AAO模板。采用溶胶一凝胶法和水热法对稀土发光材料M2O3:RE3+(M=Y,Gd; RE=Eu,Tb)体系进行了AAO组装,得到了纳米线、纳米管及其纳米线阵列。对AAO模板和组装样品的形貌、结构和光谱性质进行了表征,得到了一些令人感兴趣的研究结果,其主要的结果和结论总结如下:(1)采用二次阳极氧化法制备出了孔径约为5Onm、35nm和2Onm等系列高度有序纳米阵列孔的基体铝支持的AAO模板和独立支撑的AAO模板。(2)XRD测试结果表明:退火后的基体铝片,其331晶面优先结晶生长,这有利于高度有序纳米阵列孔AAO模板的制备。使用这些退火后的铝片,通过二次阳极氧化法制备的高度有序纳米阵列孔AAO膜为非晶态,并且在退火后转变为γ-Al2O3。(3)未退火的基体铝支持的AAO模板,在350一600nm范围内发出较强的蓝光,其峰值波长位于435nm。该蓝光发射带经过程序控温慢慢退火后完全消失,这说明它产生于缺陷发光中心。(4)采用溶胶一凝胶法,利用AAO模板首次合成出了(YO.96RE0.05)O3(RE=Eu,Tb)纳米线及其阵列,并通过SEM、EDX、TEM、SAED、XRD和PL分析测试加以确认。x-射线衍射(XRD)和选区电子衍射(SAED)的结果证明,这些纳米线主要是由立方相的RE2O3(RE=Y或Gd)多晶材料组成的。光谱测试结果表明,同体相材料相比,Eu3+的,D0一7F2跃迁发射峰和Tb3+的5D4一7FJ(J=6,5,4,3)跃迁发射峰出现了宽化,这种现象可能是纳米颗粒的表面界面效应所引起的非均匀宽化造成的。(5)首次观察到利用溶胶一凝胶法组装的一部分M2O3:RE3+(M=Y,Gd;RE=Eu,Tb)样品,沿着AAO模板阵列孔壁的边沿所形成的网状结构,并初步地探讨了其形成的机理。(6)对于M2O3:RE3+(M=Y,Gd;RE=Eu,Tb)体系,仅仅依靠毛细作用是难以充分地将溶胶前驱液组装进从O模板的阵列孔中。(7)首次利用水热合成法,在中性条件介质下,将(Y,Gd)2O3:Eu3+样品充分地组装进了AAO模板的纳米孔道中,这说明水热产生的高压可以作为AAO模板组 装样品的驱动力。(8)以M2O3: RE3+(M=Y,Gd;RE=Eu,Tb)溶胶或氢氧化物沉淀作为前驱物,分别在酸性和碱性条件下,进行了从0模板水热合成组装。实验结果表明,AAO模板被部分地损坏。但在碱性条件下的高压釜中,却得到了单晶纳米管、纳米片和纳米棒。
Resumo:
We report on an aluminum oxynitride (AlON) film which was successfully made using the reactiver r.f. sputtering method in an N2-O2 mixture. The fabrication process, atomic components, breakdown field and refractive index of the AlON film are shown in detail. The AlON film is a new polyfilm combining the good properties of Al2O3 and AlN, and it is very interesting with regard to optoelectronic devices and integrated optic circuits.
Resumo:
The energetics, lattice relaxation, and the defect-induced states of st single O vacancy in alpha-Al2O3 are studied by means of supercell total-energy calculations using a first-principles method based on density-functional theory. The supercell model with 120 atoms in a hexagonal lattice is sufficiently large to give realistic results for an isolated single vacancy (square). Self-consistent calculations are performed for each assumed configuration of lattice relaxation involving the nearest-neighbor Al atoms and the next-nearest-neighbor O atoms of the vacancy site. Total-energy data thus accumulated are used to construct an energy hypersurface. A theoretical zero-temperature vacancy formation energy of 5.83 eV is obtained. Our results show a large relaxation of Al (O) atoms away from the vacancy site by about 16% (8%) of the original Al-square (O-square) distances. The relaxation of the neighboring Al atoms has a much weaker energy dependence than the O atoms. The O vacancy introduces a deep and doubly occupied defect level, or an F center in the gap, and three unoccupied defect levels near the conduction band edge, the positions of the latter are sensitive to the degree of relaxation. The defect state wave functions are found to be not so localized, but extend up to the boundary of the supercell. Defect-induced levels are also found in the valence-band region below the O 2s and the O 2p bands. Also investigated is the case of a singly occupied defect level (an F+ center). This is done by reducing both the total number of electrons in the supercell and the background positive charge by one electron in the self-consistent electronic structure calculations. The optical transitions between the occupied and excited states of the: F and F+ centers are also investigated and found to be anisotropic in agreement with optical data.
Resumo:
The wet oxidation of AlGaAs with high Al content in a distributed Bragg reflectors (DBR) is studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some voids distribute along the oxide/GaAs interfaces due to the stress induced by the wet oxidation of the AlGaAs layers. These voids decrease the shrinkage of the Al2O3 layers to 8% instead of the theoretical 20% when compared to the unoxidized AlGaAs layers. With the extension of oxidation time, the reactants are more completely transported to the front interface and the products are more completely transported out along the porous interfaces. As a result,the oxide quality is better.
Resumo:
报道了利用高真空MOCVD外延生长γ氧化铝的技术和利用SOS CMOS的成熟工艺制作双异质外延Si/γ-Al2O3/Si单晶薄膜以及用其研制Si/γ-Al2O3/Si CMOS场效应晶体管、Si/γ-Al2O3/Si CMOS集成电路的初步结果.
Resumo:
In this study, we report the dependences of infrared luminescence properties of Er-implanted GaN thin films (GaN:Er) on the kinds of substrates used to grow GaN, the growth techniques of GaN, the implantation parameters and annealing procedures. The experimental results showed that the photoluminescence (PL) intensity at 1.54 mum was severely influenced by different kinds of substrates. The integrated PL peak intensity from GaN:Er /Al2O3 (00001) was three and five times stronger than that from GaN:Er /Si (111) grown by molecular beam epitaxy (MBE) and by metalorganic chemical vapor deposition (MOCVD), respectively. The PL spectra observed from GaN:Er/Al2O3 (0001) grown by MOCVD and by MBE displayed a similar feature, but those samples grown by MOCVD exhibited a stronger 1.54 mum PL. It was also found that there was a strong correlation between the PL intensity with ion implantation parameters and annealing procedures. Ion implantation induced damage in host material could be only partly recovered by an appropriate annealing temperature procedure. The thermal quenching of PL from 15 to 300 K was also estimated. In comparison with the integrated PL intensity at 15 K, it is reduced by only about 30 % when going up to 300 K for GaN:Er/Al2O3 sample grown by MOCVD. Our results also show that the strongest PL intensity comes from GaN:Er grown on Al2O3 substrate by MOCVD. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.
Resumo:
A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]
Resumo:
We describe a first-principles-based strategy to predict the macroscopic toughness of a gamma-Ni(Al)/alpha-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacernent curves are obtained from derivatives of the energy. Calculations are performed in mode I (opening), mode II (shear) and at a phase angle of 45 degrees. The shear calculations are conducted for displacements along < 110 > and < 112 > of the Ni lattice. A generalized interface potential function is used to characterize the results. Initial fitting to both the shear and normal stress results is required to calibrate the unknowns. Thereafter, consistency is established by using the potential to predict other traction quantities. The potential is incorporated as a traction/displacement function within a cohesive zone model and used to predict the steady-state toughness of the interface. For this purpose, the plasticity of the Ni alloy must be known, including the plasticity length scale. Measurements obtained for a gamma-Ni superalloy are used and the toughness predicted over the full range of mode mixity. Additional results for a range of alloys are used to demonstrate the influences of yield strength and length scale.
Resumo:
An analytical model about size-dependent interface energy of metal/ceramic interfaces in nanoscale is developed by introducing both the chemical energy and the structure stain energy contributions. The dependence of interface energy on the interface thickness is determined by the melting enthalpy, the molar volume, and the shear modulus of two materials composing the interfaces, etc. The analytic prediction of the interface energy and the atomic scale simulation of the interface fracture strength are compared with each other for Ag/MgO and Ni/Al2O3 interfaces, the fracture strength of the interface with the lower chemical interface energy is found to be larger. The potential of Ag/MgO interface related to the interface energy is calculated, and the interface stress and the interface fracture strength are estimated further. The effect of the interface energy on the interface strength and the behind mechanism are discussed.
Resumo:
We describe a first-principles-based strategy to predict the macroscopic toughness of a gamma-Ni(Al)/alpha-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacernent curves are obtained from derivatives of the energy. Calculations are performed in mode I (opening), mode II (shear) and at a phase angle of 45 degrees. The shear calculations are conducted for displacements along < 110 > and < 112 > of the Ni lattice. A generalized interface potential function is used to characterize the results. Initial fitting to both the shear and normal stress results is required to calibrate the unknowns. Thereafter, consistency is established by using the potential to predict other traction quantities. The potential is incorporated as a traction/displacement function within a cohesive zone model and used to predict the steady-state toughness of the interface. For this purpose, the plasticity of the Ni alloy must be known, including the plasticity length scale. Measurements obtained for a gamma-Ni superalloy are used and the toughness predicted over the full range of mode mixity. Additional results for a range of alloys are used to demonstrate the influences of yield strength and length scale.