570 resultados para Tb3 doped
Resumo:
A theoretical study of modal gain in p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers is presented. The expression of modal gain is derived, which includes an effective ratio that describes how many QDs contribute to the modal gain. The calculated results indicate that the modal gain with the effective ratio is much smaller than that without the effective ratio. The calculated maximum modal gain is is a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial in achieving a larger maximum modal gain that leads to lower threshold current density and higher differential modal gain. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Polycrystalline silicon (polysilicon) has been used as an important structural material for microelectro-mechnical systems (MEMS) because of its compatibility with standard integrated circuit (IC) processes. As the structural layer of micromechanical high resonance frequency (high-f) and high quality factor (high-Q) disk resonators, the low residual stress and low resistivity are desired for the polysilicon thin films. In the present work, we investigate the effect of deposition and annealing conditions on the residual stress and resistivity for in-situ deposited low pressure chemical vapor deposition (LPCVD) polysilicon films. Low residual stress (-100 MPa) was achieved in in-situ boron-doped polysilicon films deposited at 570 degrees C and annealed at 1000 degrees C for 4 hr. The as-deposited amorphous polysilicon films were crystallized by the rapid thermal annealing and have the (111)-preferred orientation, the low tensile residual stress is expected for this annealed film, the detailed description on this work will be reported soon. The controllable residual stress and resistivity make these films suitable for high-Q and bigh-f micro-mechanical disk resonators.
Resumo:
The cobalt ferrites with chemical composition Co1+xZnxFe2-2xO4 (r=0.0, 0.1, 0.2, 0.4) were obtained with conventional solid reaction. The ZnO-doped samples have lower lattice constant than CoFe2O4 by adjusting Co ions to the octahedral sites. The results show that doping ZnO could extremely improve the magnetic properties. In comparison with pure CoFe2O4, the little ZnO-doped sample has higher permeability and much lower coercivity at the condition of a little decrease of magnetization saturation. Sample with x=0.1 shows evident magnetostrictive effect at the magnetic field of 30-60 mT while pure cobalt ferrite sample does not, though the saturation magnetostriction decreases. These indicate that ZnO-doping improves the magnetostrictive sensitivity of the cobalt ferrites and have potential applications in magnetoelectric devices and magnetic detector.
Resumo:
3C-SiC is a promising material for the development of microelectromechanical systems (MEMS) applications in harsh environments. This paper presents the LPCVD growth of heavily nitrogen doped polycrystalline 3C-SiC films on Si wafers with 2.0 mu m-thick silicon dioxide (SiO2) films for resonator applications. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H-2 in a newly developed vertical CVD chamber. NH3 was used as n-type dopant. 3C-SiC films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and room temperature Hall Effect measurements. It was shown that there is no voids at the interface between 3C-SiC and SiO2. Undoped 3C-SiC films show n-type conduction with resisitivity, Hall mobility, and carrier concentration at room temperature of about 0.56 Omega center dot cm, 54 cm(2)/Vs, and 2.0x 10(17) cm(-3), respectively. The heavily nitrogen doped polycrystalline 3C-SiC with the resisitivity of less than 10(-3) Omega center dot cm was obtained by in-situ doping. Polycrystalline SiC resonators have been fabricated preliminarily on these heavily doped SiC films with thickness of about 2 mu m. Resonant frequency of 49.1 KHz was obtained under atmospheric pressure.
Resumo:
Improved electrical properties of AlxGa1-xN/GaN high electron mobility transistor (HEMT) structures grown by metalorganic chemical vapor deposition (MOCVD) were achieved through increasing the Al mole fraction in the AlGaN barrier layers. An average sheet resistance of 326.6 Omega/sq and a good resistance uniformity of 98% were obtained for a 2-inch Al0.38Ga0 62N/GaN HEMT structure. The surface morphology of AlxGa1-xN/GaN HEMT structures strongly correlates with the Al content. More defects were formed with increasing Al content due to the increase of tensile strain, which limits further reduction of the sheet resistance. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.
Resumo:
PL properties of Er3+ doped SiOx films containing Si nanoparticles have been studied. Er3+ emission intensity does not depend strongly upon crystallinity of Si clusters. The films can yield efficient Er3+ emission.
Resumo:
Boron-doped (B-doped) silicon nanowires (SiNWS) have been prepared and characterized by Raman scattering and photoluminescence (PL). B-doped SiNWS were grown by plasma enhanced chemical vapor deposition (PECVD), using diborane (B2H6) as the dopant gas. Raman spectra show a band at 480cm(-1),which is attributed to amorphous silicon. Photoluminescence at room temperature exhibits three distinct emission peaks at 1.34ev, 1.42ev, 1.47ev. Possible reason for these is suggested.
Resumo:
The optical quenching of photoconductivity under dual illumination in GaN samples with different resistivity is investigated to reveal the variation of deep levels. The samples are grown by metal organic chemical vapour deposition without intentional doping. Quenching bands centered at 1.35 eV, 1.55 eV, 1.98 eV, and 2.60 eV are observed. It is found that the 1.98 eV quenching band is dominated in all the samples and the 2.60 eV band is observed only in the high-resistivity samples. The possible defect levels responsible for the quenching bands and the origin of different quenching behaviour at 2.60 eV are discussed. It is suggested that the defect level responsible for quenching at 2.60 eV plays an important role for the enhancement of resistivity.
Resumo:
We report a period continuously tunable, efficient, mid-infrared optical parametric oscillator (OPO) based on a fan-out periodically poled MgO-doped congruent lithium niobate (PPMgLN). The OPO is pumped by a Nd:YAG laser and a maximum idler output average power of 1.65 W at 3.93 mu m is obtained with a pump average power of 10.5 W, corresponding to the conversion efficiency of about 16% from the pump to the idler. The output spectral properties of the OPO with the fan-out crystal are analyzed. The OPO is continuously tuned over 3.78-4.58 mu m (idler) when fan-out periods are changed from 27.0 to 29.4 mu m. Compared with temperature tuning, fan-out period continuous tuning has faster tuning rate and wider tuning range.
Resumo:
The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.
Resumo:
We report highly efficient and stable organic light-emitting diodes (OLEDs) with MoO3-doped perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) as hole injection layer (HIL). A green OLED with structure of ITO/20 wt% MoO3: PTCDA/NPB/Alq(3)/LiF/Al shows a long lifetime of 1012 h at the initial luminance of 2000 cd/m(2), which is 1.3 times more stable than that of the device with MoO3 as HIL. The current efficiency of 4.7 cd/A and power efficiency of 3.7 lm/W at about 100 cd/m(2) have been obtained. The charge transfer complex between PTCDA and MoO3 plays a decisive role in improving the performance of OLEDs.
Resumo:
The above work was supported by the national Basic Research Program of China (2006cb604904, 2006cb604908), the hi-tech R & D program of China (2006aa03z0408, 2006aa03z0404), the scientific research Fund of Central South University of Forstry and Technology.
Resumo:
The thin films of TiO2 doped by Mn non-uniformly were prepared by sol-gel method under process control. In our preceding study, we investigated in detail, the effect of doping mode on the photocatalytic activity of TiO2 films showing that Mn non-uniform doping can greatly enhance the activity. In this study we looked at the effect of doping concentration on the photocatalytic activity of the TiO2 films. In this paper, the thin films were characterized by UV-vis spectrophotometer and electrochemical workstation. The activity of the photocatalyst was also evaluated by photocatalytic degradation rate of aqueous methyl orange under UV radiation. The results illustrate that the TiO2 thin film doped by Mn non-uniformly at the optimal dopant concentration (0.7 at %) is of the highest activity, and on the contrary, the activity of those doped uniformly is decreased. As a comparison, in 80 min, the degradation rate of methyl orange is 62 %, 12 % and 34 % for Mn non-uniform doping film (0.7 at %), the uniform doping film (0.7 at %) and pure titanium dioxide film, respectively. We have seen that, for the doping and the pure TiO2 films, the stronger signals of open circuit potential and transient photocurrent, the better photocatalytic activity. We also discusse the effect of dopant concentration on the photocatalytic activity of the TiO2 films in terms of effective separation of the photon-generated carriers in the semiconductor. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Resumo:
Starting from the modeling of isolated ions and ion-clusters, a closed form rate and power evolution equations for high-concentration erbium-doped fiber amplifiers are constructed. Based on the equations, the effects of the fraction of ion-clusters in total ions and the number of ions per cluster on the performance of high-concentration erbium-doped fiber amplifiers are analyzed numerically. The results show that the presence of the ion-clusters deteriorates amplifier performance, such as the signal power, signal gain, the threshold pump power for zero gain, saturated signal gain, and the maximum gain efficiency, etc. The optimum fiber length or other parameters should be modified with the ion-clusters being taken into account for the amplifiers to achieve a better performance. (c) 2007 Elsevier B.V. All rights reserved.