228 resultados para X-ray crystal structures
Resumo:
The monodisperse polystyrene spheres are assembled into the colloidal crystal on the glass substrate by vertical deposition method, which is aimed at the so-called photonic crystal applications. The structural information of the bulk colloidal crystal is crucial for understanding the crystal growth mechanism and developing the various applications of colloidal crystal. Small-angle X-ray scattering (SAXS) technique was used to obtain the bulk structure of the colloidal crystal at Beamline 1W2A of BSRF. It is found that the SAXS pattern is sensitive to the relative orientation between the colloidal sample and the incident X-ray direction. The crystal lattice was well distinguished and determined by the SAXS data.
Resumo:
The fluctuations of the strained layer in a superlattice or quantum well can broaden the width of satellite peaks in double crystal X-ray diffraction (DCXRD) pattern. It is found that the width of the 0(th) peak is directly proportional to the fluctuation of the strained layer if the other related facts are ignored. By this method, the Ge-Si atomic interdiffusion in Ge nano-dots and wetting layers has been investigated by DCXRD. It is found that thermal annealing can activate Ge-Si atomic interdiffusion and the interdiffusion in the nano-dots area is much stronger than that in the wetting layer area. Therefore the fluctuation of the Ge layer decreases and the distribution of Ge atoms becomes homogeneous in the horizontal Ge (GeSi actually) layer, which make the width of the 0(th) peak narrow after annealing.
Resumo:
A model for analyzing point defects in compound crystals was improved. Based on this modified model, a method for measuring Mn content in GaMnAs was established. A technique for eliminating the zero-drift-error was also established in the experiments of X-ray diffraction. With these methods, the Mn content in GaMnAs single crystals fabricated by the ion-beam epitaxy system was analyzed.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
Cubic GaN was grown on GaAs(100) by low pressure metal organic chemical vapor deposition (MOCVD). X-ray diffraction, scanning electron microscope (SEM) and photoluminescence (PL) spectra were performed to characterize the quality of the GaN film. The PL spectra of cubic GaN thin films being thicker than 1.5 mu m were reported. Triple-crystal diffraction to analyze orientation distributions and strain of the thin films was also demonstrated.
Resumo:
We presented a series of symmetric double crystal X-ray diffraction (DCXD) measurements, (0 0 4), (2 2 0) and (2 - 2 0) diffraction, to investigate the strain relaxation in an InAs film grown on a GaAs(0 0 1) substrate. The strain tensor and rotation tensor were calculated according to the DCXD results. It is found that the misfit strain is relaxed nearly completely and the strain relaxation caused a triclinic deformation in the epilayer. The lattice parameter along the [1 1 0] direction is a little longer than that along the [1 - 1 0] direction. Furthermore, a significant tilt, 0.2 degrees, towards the [1 1 0] direction while a very slight one: 0.002 degrees, towards [1 - 1 0] direction were discussed. This anisotropic strain relaxation is attributed to the asymmetric distribution of misfit dislocations, which is also indicated by the variation of the full-width at half-maximum (FWHM) of (0 0 4) diffraction along four azimuth angles. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A series of GaAs/InAs/GaAs samples were studied by double crystal X-ray diffraction and the X-ray dynamic theory was used to analyze the X-ray diffraction results. As the thickness of InAs layer exceeds 1.7 monolayer, 3-dimensional InAs islands appear. Pendellosung fringes shifted. A multilayer structure model is proposed to describe the strain status in the InAs islands of the sample and a good agreement is obtained between the experimental and theoretical curves.
Resumo:
20-period strained-layer superlattices of nominal composition and width Ge0.2Si0.8 (5 nm)/Si(25 nm) and Ge0.5Si0.5 (5 nm)/Si(25 nm) were studied by double-crystal X-ray diffraction. The Ge content x was determined by computer simulation of the diffraction features from the superlattice. This method is shown to be independent of the relaxation of the superlattice. Alternatively, x can be obtained from the measured difference DELTAa/a in lattice spacing perpendicular to the growth plane. It is sensitive to the relaxation. Comparing the results obtained in these two different ways, information about the relaxation of the superlattices can be obtained.
Resumo:
Two samples of nominal 20-period Ge0.20Si0.80(5 nm)/Si(25 nm) and Ge0.5Si0.5(5 nm)/Si(25 nm) strained-layer superlattices (SLSs) were studied by the double-crystal X-ray diffraction method. It is convenient to define the perpendicular strains relative to the average crystal. Computer simulations of the rocking curves were performed using a kinematical step model. An excellent agreement between the measured and simulated satellite patterns is achieved. The dependence of the sensitivity of the rocking curves to the structural parameters of the SLS, such as the alloying concentration x and the layer thicknesses and the L component of the reflection g = (HKL), are clearly demonstrated.
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.
Resumo:
An (A1As/GaAs/A1As/A1GaAs)/GaAs(001) double-barrier superlattice grown by molecular beam epitaxy (MBE) is studied by combining synchrotron radiation and double-crystal x-ray diffraction (DCD). The intensity of satellite peaks is modulated by the wave function of each sublayer in one superlattice period. Simulated by the x-ray dynamical diffraction theory, it is discovered that the intensity of the satellite peaks situated near the modulating wave node point of each sublayer is very sensitive to the variation of the layer structural parameters, The accurate layer thickness of each sublayer is obtained with an error less than 1 Angstrom. Furthermore, x-ray kinematical diffraction theory is used to explain the modulation phenomenon. (C) 1996 American Institute of Physics.
Resumo:
C-60 Single crystals grown by a single-temperature-gradient technique were characterized by synchrotron radiation white beam x-ray topography and x-ray double crystal diffraction with Cu K-alpha 1 radiation on conventional x-ray source. The results show that the crystal is rather well crystallized, The x-ray topographies give an evidence of dendritic growth mechanism of C-60 Single crystal, and x-ray double crystal diffraction rocking curve shows that there are mosaic structural defects in the sample. A phase transition st 249+/-1.5% K from a simple cubic to a face centered cubic structure is confirmed by in situ observation of synchrotron radiation white beam x-ray topography with the temperature varing from 230 to 295 K.
Resumo:
We utilize slow highly charged ions of Xeq+ and Pbq+ to irradiate GaN crystal films grown on sapphire substrate, and use X-ray photoelectron spectroscopy to analyze its surface chemical composition and chemical state of the elements. The results show that highly charged ions can etch the sample surface obviously, and the GaN sample irradiated by highly charged ions has N depletion or is Ga rich on its surface. Besides, the relative content of Ga-Ga bond increases as the dose and charge state of the incident ions increase. In addition, the binding energy of Ga 3d(5/2) electrons corresponding to Ga-Ga bond of the irradiated GaN sample is smaller compared with that of the Ga bulk material. This can be attributed to the lattice damage, which shifts the binding energy of inner orbital electrons to the lower end.
Resumo:
利用低速高电荷态Xeq+和Pbq+离子对在蓝宝石衬底上生长的GaN晶体膜样品进行辐照,并利用X射线光电子能谱(XPS)对样品表面化学组成和元素化合态进行了分析.结果表明,高电荷态离子对样品表面有显著的刻蚀作用;经高电荷态离子辐照的GaN样品表面氮元素贫乏而镓元素富集;随着入射离子剂量和所携带电荷数的增大,Ga—Ga键相对含量增大;辐照后,GaN样品中Ga—Ga键对应的Ga3d5/2电子的束缚能偏小,晶格损伤使内层轨道电子束缚能向低端方向偏移.
Resumo:
Two mononuclear neutral copper(I) complexes, Cu(L-1)PPh3 (1), Cu(L-2)(PPh3)(2) (2) ([L-1](-) = [{N((C6H3Pr2)-Pr-i-2,6)C(H)}(2)CPh](-); [L-2](-) = [{N(C6H5)C(H)}(2)CPh](-)) have been synthesized and structurally characterized by X-ray crystallography. In complex 1, the copper(I) atom is in a distorted three-coordinate trigonal planar environment, whereas in complex 2 with the less sterically hindered beta-dialdiminato ligand, the copper(I) atom is the centre of a four-coordinate distorted tetrahedron. At room temperature complexes 1 and 2 in a film of PMMA exhibit green emission at 543 and 549 nm with lifetimes of 5.28 and 5.32 ns, respectively.