55 resultados para Girl Guides
Resumo:
Analytical expression of signal bandwidth of general straight and tapered N x N multimode interference (MMI) couplers is presented. The signal bandwidth is characterized as a function of mode relative energy, mode propagation delay time, and mode pulse broadening in the multimode section of MMI coupler. The model is used to evaluate the signal bandwidth of specific couplers. Results indicate that the signal bandwidth decreases seriously with the increase of channel number and channel guide space. Compared with the straight MMI coupler, the tapered MMI coupler has an improved signal bandwidth.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A method for oxidising porous silicon to obtain thick SiO2 as the cladding layer of silicon-based silica waveguides is presented. The experimental results of oxidation are given. The following conclusions are drawn: the oxidation rate of porous silicon is several orders higher than that of bulk silicon, the appropriate temperature variation rate during oxidation combined with proper porosity can prevent SiO2 on silicon substrates from cracking. and a 25 mu M thick silicon dioxide layer has been obtained.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. Their second-order nonlinear optical (NLO) coefficients chi(33)((2)) were measured by using Maker fringe method for the polymer films doped with different weight percents of DCNP. Experimental results indicate that the second-order NLO properties of the poled polymer films could decrease with the chromophore loading increasing when the chromophore loading reaches a fairly high level. In this paper, the relationship between the macroscopic second-order NLO coefficient and the chromophore number density was modified under considering the role of the electrostatic interactions of chromophores in the polymer film. According to the modified relationship, the macroscopic second-order NLO coefficient is no longer in direct proportion with the chromophore number density in the polymer film. The effect of the electrostatic interactions of chromophores on second-order NLO properties was discussed. The attenuation of the macroscopic second-order NLO activity can be demonstrated by the role of the chromophore electrostatic interactions at high loading of chromophore in the polymer systems.
Resumo:
A specially designed quantum well laser for achieving extremely low vertical beam divergence was reported and theoretically investigated. The laser structure was characterized by two low index layers inserted between the waveguide layers and the cladding layers. The additional layers were intended to achieve wide optical spread in the cladding layers and strong confinement in the active region. This enabled significant reduction of beam divergence with no sacrifice in threshold current density. The numerical results showed that lasers with extremely low vertical beam divergence from 20 degrees down to 11 degrees and threshold current density of less than 131 A/cm(2) can be easily achieved by optimization of the structure parameters. Influences of individual key structure parameters on beam divergence and threshold current density are analyzed. Attention is also paid to the minimum cladding layer thicknesses needed to maintain low threshold current densities and low internal loss. The near and far field patterns are given and discussed. (C) 1998 American Institute of Physics.
Resumo:
Polarization-independent laterally-coupled micro-ring resonator has been designed and demonstrated. The origin of the polarization-sensitivity of the photonic wire waveguide (PWW) was analyzed. A polarization-insensitive PWW structure was designed and a polarization-insensitive MRR based on this PWW structure was designed by finite difference time-domain method and was fabricated on an 8-inch silicon-on-insulator wafer. The offset between the resonant wavelengths of the quasi-TE mode and the quasi-TM mode is smaller than 0.15 nm. The FSR is about 17 nm, extinction ratio about 10 dB and Q about 620.
Resumo:
Micro-cavity structure composed of silicon wire with 240nm square cross section and two symmetrical sidewall waveguide Bragg gratings is fabricated and studied for the operation under telecommunication wavelengths. Optical filter of quasi-TE mode was realized based on this cavity. In such micro-cavity, optical quality factor (Q) was measured up to 380 with a 4.8nm free spectral range (FSR) and 12dB fringe contrast (FC). The measured group index of silicon waveguide with only 240nm square cross section was between 3.80 and 5.43. It is the first time group delay of silicon wire waveguide with such small core dimension is studied. Larger group delay can be expected after optimizing the design parameters and the fabrication process.
Resumo:
A compact polarization-insensitive 8x8 arrayed waveguide grating with 100GHz channel spacing at 1.55 mu m is presented on the material of silicon on insulator (SOI). Increasing the epitaxial layer thickness can reduce the birefringence of the waveguide, but the wvaeguide's bend radius also increases at the same time. We choose the SOI wafer with 3.0 mu m epitaxial layer to reduce the device's size and designed the appropriate structure of rib wave-guides to eliminate the polarization dependant wavelength shift. Compared to the other methods of eliminating the polarization dependant wavelength shift, the method is convenient and easy to control the polarization without additional etching process. The index differences between TE0 and TM0 of straight and bend waveguides are 1.4x10(-5) and 3.9x10(-5), respectively. The results showed that the polarization dependant wavelength shift is 0.1nm, and the device size is 1.5x1.0 cm(2).
Resumo:
A scattering matrix method for investigating the electron transport in quantum waveguides is presented. By dividing the structure into a number of transverse slices, the global scattering matrix is obtained by the composition of the individual scattering matrices associated with each interface. Complicated geometries and inhomogeneous external potentials are included in the formulation. It is shown that the proposed scattering matrix method possesses many advantages over the traditional mode-matching and transfer matrix methods, especially in treating the electron wave propagation in complicated geometries. Justification for the method is provided by the unitarity of the calculated scattering matrix, and the consistency of the results with those obtained by the recursive Green's function method.
Resumo:
Because of Si-Ge interdiffusion in the Si-SiGe interface during the growth process, the square-wave refractive index distribution of a SiGe-Si multiple-quantum-web (MQW) will become smooth. In order to simulate the actual refractive index profile, a staircase approximation is applied. Based on this approach, the dispersion equation of the MQW waveguide is obtained by using a transfer matrix method, The effects of index changes caused by the interdiffusion on the optical field and the characteristics of the photodetector are evaluated by solving the dispersion equation, It is shown that the Si-Ge interdiffusion can result in a reduction of the effective absorption coefficient and the quantum efficiency.
Resumo:
MMI (multimode interference) coupler, modulator and switch based on SOI (silicon- on-insulator) have been become more and more attractive in optical systems since they show important performances. SiO2 thin cladding layers (<1.0mum) can be used in SOI waveguide due to the large index step between Si and SiO2, making them compatible with the VLSI technology. The design and fabrication of multimode interference (MMI) optical coupler, modulator and switche in SOI technology are presented in the paper. The results demonstrated that the modulator has an extinction ratio of -11.0dB and excess loss of -2.5dB, while the optical switch has a crosstalk of -12.5dB and responding time of less than 20 mus.
Resumo:
The stress distribution in silica optical waveguides on silicon is calculated by using finite element method (FEM). The waveguides are mainly subjected to compressive stress along the x direction and the z direction, and it is accumulated near the interfaces between the core and cladding layers. The shift of central wavelength of silica arrayed waveguide grating (AWG) on silicon-substrate with the designed wavelength and the polarization dependence are caused by the stress in the silica waveguides.
Resumo:
Erbium-doped silica glasses were made by sol-gel process. Intensive photoluminescence (PL) spectra from the Er-doped silica glasses at room temperature were measured. A broadband peak at 1535 ma, corresponding to the I-4(13/2)-I-4(15/2) transition, its full width at half-maximum (FWHM) of 10 nm, and a shoulder at 1546 nm in the PL spectra were observed. At lower temperatures, main line of 1535 nm and another line of 1552 Mn instead of 1546 nm appear. So two types of luminescence centers must exist in the samples at different temperature. The intensity of main line does not decrease obviously with increasing temperature. By varying the Er ion concentration in the range of 0.2 wt% - 5wt%, the highest photoluminescence intensity was obtained at 0.2wt% erbium doped concentration. Luminescence intensity decreases with increasing erbium concentration. Cooperative upconversion was used to explain the concentration quenching of luminescence from silica glass with high erbium concentration. Extended X-ray absorption fine structure measurements were carried out. It was found that the majority of the erbium impurities in the glasses have a local structure of eight first neighbor oxygen atoms at a mean distance of 0.255 nm, which is consistent with the typical coordination structure of rare earth ion.
Resumo:
A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.