397 resultados para lanthanum strontium-doped manganite
Resumo:
Cr-doped InAs self-organized diluted magnetic quantum dots (QDs) are grown by low-temperature molecular-beam epitaxy, Magnetic measurements reveal that the Curie temperature of all the InAs:Cr QDs layers with Cr/In flux ratio changing from 0.026 to 0.18 is beyond 400 K. High-resolution cross sectional transmission electron microscopy images indicate that InAs:Cr QDs are of the zincblende structure. Possible origins responsible for the high Curie temperature are discussed.
Resumo:
Magneto-transport measurements have been carried out on double/single-barrier-doped In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well samples from 1.5 to 60 K in an applied magnetic field up to 13 T. Beating Shubnikov-de Haas oscillation is observed for the symmetrically double-barrier-doped sample and demonstrated due to a symmetric state and an antisymmetric state confined in two coupled self-consistent potential wells in the single quantum well. The energy separation between the symmetric and the antisymmetric states for the double-barrier-doped sample is extracted from experimental data, which is consistent with calculation. For the single-barrier-doped sample, only beating related to magneto-intersubband scattering shows up. The pesudospin property of the symmetrically double-barrier-doped single quantum well shows that it is a good candidate for fabricating quantum transistors. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Taking into account the compensation effect of B to Ge in strained SiGe layers for the first time, the effect of heavily doped boron on the bandgap narrowing of strained SiGe layers is calculated, and the classical Jain-Roulston (J-R) model is modified. The results show that our modified J-R model well fits the experimental values. Based on the modified J-R model, the real bandgap narrowing distribution between the conduction and valence bands is further calculated, which has great influence on modelling the electrical characteristics of SiGe heterojunction bipolar transistors.
Resumo:
A stabilized and tunable single-longitudinal-mode erbium-doped fiber ring laser has been proposed and experimentally demonstrated. The laser is structured by combining the compound cavity with a fiber Fabry-Perot tunable filter. An injection-locking technique has been used to stabilize the wavelength and output power of the laser. One of the longitudinal modes is stimulated by the injected continuous wave so that this mode is able to win the competition to stabilize the system. A minimum output power of 0.6 dBm and a signal-to-noise ratio of over 43 dB within the tuning range of 1527-1562 nm can be achieved with the proposed technique. A wavelength variation of less than 0.01 nm, a power fluctuation of less than 0.02 dB, and a short-term linewidth of about 1.4 kHz have also been obtained.
Resumo:
Photoluminescence from Er3+-implanted Si-in-SiN, films emitting efficiently visible light were investigated. A Stark structure in the Er3+ photoluminescence spectrum was observed at room temperature, which reveals more than one site symmetry for the Er3+-centers in the Si-in-SiN, matrix. The correlation between the visible photoluminescence from the silicon nanoparticles and the 1.54 mu m emission from the Er3+-centers was discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Semiconductor optical amplifiers (SOAs) with n-type modulation-doped multiple quantum well structure have been investigated. The shortened carrier lifetime is derived from the PL spectrum and electrical modulation frequency response measurement. The carrier lifetime in semiconductor optical amplifiers with any n-type-2-modulated doping multiple quantum well structure is less than 60% of that in the undoped partner. The shortest measured carrier lifetime of 236 ps in the MD-MQW SOA with sheet carrier density of 3 x 10(12) cm(-2) was only 38% of that in the undoped MQW SOA, which can increase the wavelength conversion efficiency via four wave mixing by a factor of about 7 and switching speed via XGM and XPM applications by a factor of 2.63.
Resumo:
We extend the use of Raman spectroscopy to investigate the modes of Er-implanted and Er + O co-implanted GaN, and discuss the influence of O ions on Er3+ -related infrared photoluminescence (PL). It is found that Er3+ implantation introduces new Raman peaks in Raman spectra at frequencies 300 and 670 cm and one additional new peak at 360cm is introduced after Er + O implantation. It is proposed that the broad structure around 300 cm(-1) mode originates from disorder-activated scattering (DARS). The Raman peak at 670 cm is assigned to nitrogen vacancy related defects. The 360 cm peak is attributed to the O implantation induced defect complexes (vacancies, interstitial, or anti-sites in the host). The appearance of the 360 cm(-1) mode results in the decrease of the Er3+ -related infrared PL of GaN: Er + O.
Resumo:
Low indium content InGaN/AlGaN multiple quantum wells (MQWs) have been grown on Si(111) substrate by metal-organic chemical vapour deposition (MOCVD). A new method of using an isoelectronic indium-doped AlGaN barrier has been found to be very effective in improving the crystalline quality and interfacial abruptness of InGaN quantum well layers. We grew five periods of In0.06Ga0.94N/Al0.20Ga0.80N:In MQWs with In-doped barrier layers and obtained strong near-ultraviolet (UV) emission (similar to 400 nm) at room temperature. An In-doped AlGaN barrier improves the room-temperature PL intensity of InGaN/AlGaN MQWs, making it a candidate barrier for a near-UV source on Si substrate.
Resumo:
We deduce the eight-band effective-mass Hamiltonian model for a manganese-doped ZnSe quantum sphere in the presence of the magnetic field, including the interaction between the conduction and valence bands, the spin-orbit coupling within the valence bands, the intrinsic spin Zeeman splitting, and the sp-d exchange interaction between the carriers and magnetic ion in the mean-field approximation. The size dependence of the electron and hole energy levels as well as the giant Zeeman splitting energies are studied theoretically. We find that the hole giant Zeeman splitting energies decrease with the increasing radius, smaller than that in the bulk material, and are different for different J(z) states, which are caused by the quantum confinement effect. Because the quantum sphere restrains the excited Landau states and exciton states, in the experiments we can observe directly the Zeeman splitting of basic states. At low magnetic field, the total Zeeman splitting energy increases linearly with the increasing magnetic field and saturates at modest field which is in agreement with recent experimental results. Comparing to the undoped case, the Zeeman splitting energy is 445 times larger which provides us with wide freedom to tailor the electronic structure of DMS nanocrystals for technological applications.
Resumo:
The local environment of Er3+ in heavily Er-doped (Er, 2.5 at. %) Si nanoclusters embedded in SiO2 films annealed at various temperatures was investigated by using the fluorescence-extended x-ray absorption fine structure spectroscopy. The results show that annealing caused a large effect on the local environment of Er3+ surrounded by O atoms and the 1.54 mu m photoluminescence intensity. The correlation between the local environment around Er3+ and the corresponding 1.54 mu m photoluminescence was discussed. (c) 2006 American Institute of Physics.
Resumo:
Contactless electroreflectance (CER) and photoreflectance (PR) measurements have been performed on samples with the structure of an n-doped GaAs epitaxial layer on a semi- insulating GaAs substrate. Modulated reflectance signals from the n-GaAs surface and those from the n-GaAs/SI-GaAs interface are superposed in PR spectra. For the case of CER measurement, however, Franz-Keldysh oscillations (FKOs) from the interface, which are observed in PR spectra, cannot be detected. This discrepancy is attributed to different modulation mechanisms of CER and PR. In CER experiments, the electric field modulation cannot be added to the interfacial electric field because of the effective screening by the fast response of carriers across the interface. FKOs from the interface without any perturbation by the surface signals are extracted by subtracting CER spectra from PR spectra.
Resumo:
Structural and magnetic characteristics of Fe3-xSnxO4 (x < 0.3) nanoparticles synthesized using the precipitation exchange method have been investigated by X-ray diffraction, transmission electron microscope, Mossbauer spectra, X-ray photoelectron spectroscopy and magnetization measurement. The mean particle dimension decreases from 8 to 6 nm, the lattice parameters enlarge, the saturation magnetization decreases, as well as the magnetization and the coercive field increase, with increasing tin-content. The paramagnetic property of the specimens indicates that the replacement of Fe3+ by Sn4+ on the octahedral sites of Fe3O4 causes a progressive lowering of the Curie temperature and the Curie temperatures of the materials are all lower than that of crystallite tin-doped magnetite. This striking debasing is due to the lessening of the grain size. This is the smallest size reported thus far for paramagnetic tin-doped magnetite particles. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have carried out a theoretical study of double-delta-doped InAlAs/InGaAs/InP high electron mobility transistor (HEMT) by means of the finite differential method. The electronic states in the quantum well of the HEMT are calculated self-consistently. Instead of boundary conditions, initial conditions are used to solve the Poisson equation. The concentration of two-dimensional electron gas (2DEG) and its distribution in the HEMT have been obtained. By changing the doping density of upper and lower impurity layers we find that the 2DEG concentration confined in the channel is greatly affected by these two doping layers. But the electrons depleted by the Schottky contact are hardly affected by the lower impurity layer. It is only related to the doping density of upper impurity layer. This means that we can deal with the doping concentrations of the two impurity layers and optimize them separately. Considering the sheet concentration and the mobility of the electrons in the channel, the optimized doping densities are found to be 5 x 10(12) and 3 x 10(12) cm(-2) for the upper and lower impurity layers, respectively, in the double-delta-doped InAlAs/InGaAs/InP HEMTs.
Resumo:
As-doped p-type ZnO films were grown on GaAs by sputtering and thermal diffusion process. Hall effect measurements showed that the as-grown films were of n-type conductivity and they were converted to p-type behavior after thermal annealing. Moreover, the hole concentration of As-doped p-type ZnO was very impressible to the oxygen ambient applied during the annealing process. In addition, the bonding state of As in the films was investigated by x-ray photoelectron spectroscopy. This study not only demonstrated an effective method for reliable and reproducible p-type ZnO fabrication but also helped to understand the doping mechanism of As-doped ZnO. (c) 2006 American Institute of Physics.
Resumo:
Mg-doped AlGaN and GaN/AlGaN superlattice are grown by metalorganic chemical vapour deposition (MOCVD). Rapid thermal annealing (RTA) treatments are carried out on the samples. Hall and high resolution x-ray diffraction measurements are used to characterize the electrical and structural prosperities of the as-grown and annealed samples, respectively. The results of hall measurements show that after annealing, the Mg-doped AlGaN sample can not obtain the distinct hole concentration and can acquire a resistivity of 1.4 x 10(3) Omega cm. However, with the same annealing treatment, the GaN/AlGaN superlattice sample has a hole concentration of 1.7 x 10(17) cm(-3) and of Mg acceptors, which leads to higher hole concentration and lower p-type resistivity.