192 resultados para time resolved photoluminescence
Resumo:
Spin dynamics in (Ga,Mn)As films grown on GaAs(001) was investigated by Time-resolved magneto-optical Kerr effect. The Kerr signal decay time of (Ga,Mn)As without external magnetic field applied was found to be several hundreds picoseconds, which suggested that photogenerated polarized holes and magnetic ions are coupled as a ferromagnetic system. Nonmonotonic temperature dependence of relaxation and dephasing (R&D) time and Larmor frequency manifests that Bir-Aronov-Pikus mechanism dominates the spin R&D time at low temperature, while D'yakonov-Perel mechanism dominates the spin R&D time at high temperature, and the crossover between the two regimes is Curie temperature.
Resumo:
In this article, we report a combined experimental and theoretical study on the luminescence dynamics of localized carriers in disordered InGaN/GaN quantum wells. The luminescence intensity of localized carriers is found to exhibit an unusual non-exponential decay. Adopting a new model taking the radiative recombination and phonon-assisted hopping transition between different localized states into account, which was recently developed by Rubel et al., the non-exponential decay behavior of the carriers can be quantitatively interpreted. Combining with precise structure characterization, the theoretical simulations show that the localization length of localized carriers is a key parameter governing their luminescence decay dynamics. (c) 2006 Optical Society of America.
Resumo:
The influence of nonradiative recombination on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by time-resolved photoluminescence under various excitation intensities. It is found that the PL decay process strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual nonexponential behavior and show a convex shape. By introducing a new parameter of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. The cw PL data further demonstrate the nonradiative recombination effect on the optical properties of GaInNAs/GaAs quantum wells. (c) 2006 American Institute of Physics.
Resumo:
Low-temperature time-resolved photoluminescence (PL) experiments have been performed on a semiconductor planar microcavity, which contains two sets of three In0.13Ga0.87As/GaAs quantum wells embedded in a 3 lambda /2 GaAs cavity. The spontaneous emission dynamics of both lower- and upper-branch polaritons is investigated as a function of exciton-cavity detuning under nonresonant optical excitation. It is found that the PL decay times of both branches are independent of cavity detuning while the PL rising kinetics of the lower- and upper-branch polaritons exhibits a significant difference. The rise time of the upper polarition branch shows a strong dependence on cavity detuning, while the rise time of the lower polarition branch is less sensitive to cavity detuning. Our results can be well understood in the framework of the theoretical prediction of Tassone et al.
Resumo:
Strong temperature dependence of optical properties has been studied in visible InAlAs/AlGaAs quantum dots, by employing photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. The fast redshift of the exciton emission peak was observed at much lower temperature range compared to that observed in the InAs/GaAs QDs. In TRPL we did not observe the constant decay time even at low temperature. Instead, the observed decay time increases quickly with increasing temperature, showing 2D properties in the transient dynamic process. We attributed our results to the strong lateral coupling effect, which results in the formation of the local minibands or extended states from the discrete energy levels. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The nonradiative recombination effect on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by photoluminescence and time-resolved photoluminescence under various excitation intensities and temperatures. It is found that the PL decay dynamics strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual non-exponential behavior and show a convex shape. By introducing a new concept of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. In the cw PL measurement, a rapid PL quenching is observed even at very low temperature and is of the excitation power dependence. These results further demonstrate that the non-radiative recombination process plays a very important role on the optical properties of GaInNAs/GaAs quantum wells.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-12-05T05:05:17Z No. of bitstreams: 1 Note:A time-resolved Kerr rotation system with a rotatable in-plane magnetic field.pdf: 620425 bytes, checksum: 354584f39f341db1d35ee96d2b0fe14e (MD5)
Resumo:
The chemical adsorption of sodium sulphide, ferrocene, hydroquinone and p-methyl-nitrobenzene onto the surface of a GaAs/AlxGa1-xAs multiquantum well semiconductor was characterized by steady state and time-resolved photoluminescence (PL) spectroscopy. The changes in the PL response, including the red shift of the emission peak of the exciton in the quantum well and the enhancement of the PL intensity, are discussed in terms of the interactions of the adsorbed molecules with surface states.
Resumo:
Subband separation energy dependence of intersubband relaxation time in a wide quantum well (250 Angstrom) was studied by steady-state and time-resolved photoluminescence. By applying a perpendicular electrical field, the subband separation energy in the quantum well is continuously tuned from 21 to 40 meV. As a result, it is found that the intersubband relaxation time undergoes a drastic change from several hundred picoseconds to subpicoseconds. It is also found that the intersubband relaxation has already become very fast before the energy separation really reaches one optical phonon energy. (C) 1997 American Institute of Physics.
Resumo:
Optical properties of single submonolayer InAs structures grown on GaAs (001) matrix are systematically investigated by means of photoluminescence acid time-resolved photoluminescence, It is shown that the formation of InAs dots with 1 ML height leads to localization of excitons under certain submonolayer InAs coverages, which play a key role in the highly improved luminescence efficiency of the submonolayer InAs/GaAs structures. (C) 1995 American Institute of Physics.
Resumo:
Two quaternary InAlGaN films were grown by metal-organic chemical-vapor deposition (MOCVD) on sapphire (0001) substrates with and without high-temperature GaN interlayer, respectively. The structural and optical properties of the quaternary films were investigated by high-resolution X-ray diffraction (HRXRD), high-resolution electron microscopy (HREM), temperature-dependent photoluminescence (PL) spectroscopy and time-resolved photoluminescence (TRPL) spectroscopy. According to the HRXRD and PL results, it is demonstrated that two samples have the same crystal quality. The TRPL signals of both samples were fitted well as a stretched exponential decay from 14 K to 250 K, indicating significant disorder in the materials, which is attributed to recombination of excitons localized in disorder quantum nanostructures such as quantum dots or quantum disks originating from indium (In) clusters or In composition fluctuation. The cross-section HREM measurement further proves that there exist disorder quantum nanostructures in the quaternary. By investigating the temperature dependence of the dispersive exponent beta, it is shown that the stretched exponential decays of the two samples originate from different mechanisms. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb3+ chelate. N,N.N-1,N-1-12,6-bis(3'-aminomethyl-1'-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb3+ (BPTA-Tb3+), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2- aminoethylamino)-ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric quantum methods show that the nanoparticles are spherical and uniform in size, 45 +/- 3 nm in diameter, strongly fluorescent with fluorescence yield of 10% and a long fluorescence lifetime of 2.0 ms. The amino groups directly introduced to the nanoparticle's surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human alpha-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of (x-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10 ng ml(-1) to about 100 ng ml(-1) with the detection limit of 0.10 ng ml(-1). The coefficient variations (CVs) of the method are less than 9.0%. and the recoveries are in the range of 84-98% for human serum sample measurements. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The in situ crystallization kinetics of syndiotactic poly(propylene) (sPP) has been investigated by synchrotron small-angle X-ray scattering (SAXS). The structure evolutions during the isothermal crystallization of sPP with different shear rates have been observed. The results show that shear accelerates the process of crystallization kinetics. Even under low shear rate, the lamellae can be distinctly oriented. In contrast, the lamellar parameters such as the long period, lamellar thickness, and the scattering invariant 0 can change obviously only under high shear rate.
Resumo:
LaPO4: Ce3+ and LaPO4: Ce3+, Tb3+ phosphor layers have been deposited successfully on monodispersed and spherical SiO2 particles of different sizes ( 300, 500, 900 and 1200 nm) through a sol - gel process, resulting in the formation of core - shell structured SiO2@ LaPO4: Ce3+/ Tb3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microcopy (SEM), transmission electron microscopy (TEM), and general and time-resolved photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO2@ LaPO4: Ce3+/ Tb3+ samples. The XRD results demonstrate that the LaPO4: Ce3+, Tb3+ layers begin to crystallize on the SiO2 templates after annealing at 700 degrees C, and the crystallinity increases on raising the annealing temperature. The obtained core - shell phosphors have perfectly spherical shape with a narrow size distribution, non-agglomeration, and a smooth surface. The doped rare-earth ions show their characteristic emission in the core - shell phosphors, i.e. Ce3+ 5d - 4f and Tb3+5D4 - F-7(J) (J = 6 - 3) transitions, respectively. The PL intensity of the Tb3+ increased on increasing the annealing temperature and the SiO2 core particle size.