62 resultados para student mobility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhancement of the electrical properties in an AlGaN/GaN high electron mobility transistor (HEMT) structures was demonstrated by employing the combination of a high mobility GaN channel layer and an AlN interlayer. The structures were grown on 50 mm semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition (MOCVD). The room temperature (RT) two-dimensional electron gas (2DEG) mobility was as high as 2215 cm(2)/V s, with a 2DEG concentration of 1.044 x 10(13)cm(-2). The 50 mm HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with a resistance uniformity of 2.02%. The 0.35 Pin gate length HEMT devices based on this material structure, exhibited a maximum drain current density of 1300 mA/mm, a maximum extrinsic transconductance of 314 mS/mm, a current gain cut-off frequency of 28 GHz and a maximum oscillation frequency of 60 GHz. The maximum output power density of 4.10 W/mm was achieved at 8 GHz, with a power gain of 6.13 dB and a power added efficiency (PAE) of 33.6%. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy ( MBE) in turn on a GaAs substrate. An Al0.24Ga0.76As chair barrier layer, which is grown adjacent to the top AlAs barrier, helps to reduce the valley current of RTD. The peak-to-valley current ratio of fabricated RTD is 4.8 and the transconductance for the 1-mu m gate HEMT is 125mS/mm. A static inverter which consists of two RTDs and a HEMT is designed and fabricated. Unlike a conventional CMOS inverter, the novel inverter exhibits self-latching property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of dislocations and Si doping on the electrical properties of n-type GaN grown by metal organic chemical vapor deposition (MOCVD) are investigated. It is found that both electron mobility and carrier concentration are strongly influenced by edge dislocations. A moderate Si doping during the GaN growth improves the electron mobility, but the best doping effect depends on the dislocation density of the sample. High quality about 4-mu m-thick MOCVD-grown GaN film with a room temperature electron mobility as high as 1005 cm(2)/V s is obtained by optimizing growth conditions. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4.2 K photoluminescence (PL) and 77 K standard Hall-effect measurements were performed for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor (HEMT) structures grown on GaAs substrates with different indium contents in the InxGa1-xAs well or different Si delta-doping concentrations. It was found that electron concentrations increased with increasing PL intensity ratio of the "forbidden" transition (the second electron subband to the first heavy-hole subband) to the sum of the "allowed" transition (the first electron subband to the first heavy-hole subband) and the forbidden transition. And electron mobilities decreased with increasing product of the average full width at half maximum of allowed and forbidden transitions and the electron effective mass in the InxGa1-xAs quantum well. These results show that PL measurements are a good supplemental tool to Hall-effect measurements in optimization of the HEMT layer structure. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A1GaAs/1nGaAs high electron mobility transistors (HEMTs) and AlAs/GaAs resonant tunnelling diodes (RTDs) are integrated on GaAs substrates. Molecular beam epitaxy is used to grow the RTD on the HEMT structure. The current-voltage characteristics of the RTD and HEMT are obtained on a two-inch wafer. At room temperature, the peak-valley, current ratio and the peak voltage are about 4.8 and 0.44 V, respectivcly The HEMT is characterized by a, gate length of 1 mu m, a, maximum transconductance of 125 mS/mm, and a threshold voltage of -1.0 V. The current-voltage, characteristics of the series-connected RTDs are presented. Tire current-voltage curves of the parallel connection of one RTD and one HEMT are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shubnikov-de Haas measurements were carried out for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structures grown on GaAs substrates with different indium contents and/or different Si delta-doping concentrations. Zero-field (B-->0) spin splitting was found in samples with stronger conduction band bending in the InGaAs well. It was shown that the dominant spin splitting mechanism is attributed to the contribution by the Rashba term. We found that zero-field spin splitting not only occurs in the ground electron subband, but also in the first excited electron subband for a sample with Si delta-doping concentration of 6x10(12) cm(-2). We propose that this In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor structure grown on GaAs may be a promising candidate spin-polarized field-effect transistors. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A step-graded InAlAs buffer layer and an In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor (MM-HEMT) structures were grown by molecular beam epitaxy on GaAs (001) substrates, and rapid thermal annealing was performed on them in the temperature range 500-800 degreesC for 30 s. The as-grown and annealed samples were investigated with Hall measurements, and 77 K photoluminescence. After rapid thermal annealing, the resistivities of step-graded InAlAs buffer layer structures became high. This can avoid leaky characteristics and parasitic capacitance for MM-HEMT devices. The highest sheet carrier density n(s) and mobility mu for MM-HEMT structures were achieved by annealing at 600 and 650degreesC, respectively. The relative intensities of the transitions between the second electron subband to the first heavy-hole subband and the first electron subband to the first heavy-hole subband in the MM-HEMT InGaAs well layer were compared under different annealing temperatures. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Shubnikov-de Haas (SdH) oscillation measurement was performed on highly doped InAlAs/InGaAs metamorphic high-electron-mobility transistors on GaAs substrates at a temperature of 1.4 K. By analyzing the experimental data using fast Fourier transform, the electron densities and mobilities of more than one subband are obtained, and an obvious double-peak structure appears at high magnetic field in the Fourier spectrum. In comparing the results of SdH measurements, Hall measurements, and theoretical calculation, we found that this double-peak structure arises from spin splitting of the first-excited subband (i=1). Very close mobilities of 5859 and 5827 cm(2)/V s are deduced from this double-peak structure. The sum of the carrier concentration of all the subbands in the quantum well is only 3.95x10(12) cm(-2) due to incomplete transfer of the electrons from the Si delta -doped layer to the well. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAlAs/InGaAs metamorphic high-electron-mobility transistor structures with different spacer layers on GaAs substrates are characterized by Raman measurements. The influence of In0.52Al0.48As spacer thickness on longitudinal optic phonon-plasmon coupling is investigated. It is found that the intensity of GaAs-like longitudinal optic phonon, which couples with collective intersubband transitions of two-dimensional electron gas, is strongly affected by the different subband energy spacings, subband electron concentrations, and wave function distributions, which are determined by different spacer thicknesses. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defects and morphologies are presented in this paper as revealed with transmission electron microscope (TEM) in the In(0.8)G(0.2)As/InAlAs heterostructure on InP(001) for high-electron-mobility transistors application. Most of the misfit dislocation lines are 60 degrees type and they deviate < 110 > at some angles to either side according to their Burges vectors. The misfit dislocation lines deviating [-110] are divided into two types according to whether their edge component b(eg) of Burges vectors in [001] pointing up or down. If b(eg) points up in the growth direction, there is the local periodical strain modulation along the dislocation line. In addition, the periodical modulation in height along [-110] on the In(0.8)G(0.2)As surface is observed, this surface morphology is not associated with the relaxation of mismatch strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality InGaAs/InAlAs/InP high-electron-mobility transistor (HEMT) structures with lattice-matched or pseudomorphic channels have been grown by molecular-beam epitaxy (MBE). The purpose of this work is to enhance the channel conductivity by changing the epitaxial structure and growth process. With the use of pseudomorphic step quantum-well channel, the highest channel conductivity is achieved at x = 0.7, the corresponding electron mobilities are as high as 12300 (300 K) and 61000 cm(2)/V.s (77 K) with two-dimensional electron gas (2DEG) density of 3.3 x 10(12) cm(-2). These structures are comprehensively characterized by Hall measurements, photoluminescence, double crystal X-ray diffraction and transmission electron microscopy. Strong room-temperature luminescence is observed, demonstrating the high optical quality of the samples. We also show that decreasing the In composition in the InyAl1-yAs spacer is very effective to increase the 2DEG density of PHEMT structures. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al0.3Ga0.7N/AlN/GaN HEMT structures with significantly high mobility have been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. At room temperature (RT) a Hall mobility of 2104 cm(2)/Vs and a two-dimensional electron gas (2DEG) density of 1.1x10(13) cm(-2) are achieved, corresponding to a sheet resistance of 277.8 Omega/sq. The elimination of V-shaped defects were observed on Al0.3Ga0.7N/AlN/GaN HEMT structures and correlated with the increase of 2DEG mobility. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mobility of channel electron, for partially depleted Sol nMOSFET in this paper, decreases with the increase of implanted fluorine dose in buried oxide layer. But, the experimental results also show that it is larger for the transistor corresponding to the lowest implantation dose than no implanted fluorine in buried layer. It is explained in tern-is of a "lubricant" model. Mien fluorine atoms are implanted in the top silicon layer, the mobility is the largest. In addition, a positive shift of threshold voltage has also been observed for the transistors fabricated on the Sol wafers processed by the implantation of fluorine. The causes of all the above results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of channel layer width, spacer layer width, and delta-doping density on the electron density and its distribution in the AlSb/InAs high electron mobility transistors (HEMTs) have been studied based on the self-consistent calculation of the Schrodinger and Poisson equations with both the strain and nonparabolicity effects being taken into account. The results show that, having little influence on the total two dimensional electron gas (2DEG) concentration in the channel, the HEMT's channel layer width has some influence on the electron mobility, with a channel as narrow as 100-130 angstrom being more beneficial. For the AlSb/InAs HEMT with a Te delta-doped layer, the 2DEG concentration as high as 9.1 X 10(12) cm(-2) can be achieved in the channel by enhancing the delta-doping concentration without the occurrence of the parallel conduction. When utilizing a Si delta-doped InAs layer as the electron-supplying layer of the AlSb/InAs HEMT, the effect of the InAs donor layer thickness is studied on the 2DEG concentration. To obtain a higher 2DEG concentration in the channel, it is necessary to use an InAs donor layer as thin as 4 monolayer. To test the validity of our calculation, we have compared our theoretical results (2DEG concentration and its distribution in different sub-bands of the channel) with the experimental ones done by other groups and show that our theoretical calculation is consistent with the experimental results.