604 resultados para quantum well lasers
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
The growth of GalnNAs/GaAs quantum well (QW) has been investigated by solid-source molecular beam epitaxy (MBE). N was introduced by a dc-active plasma source. Highest N concentration of 2.6% in GaInNAs/GaAs QW was obtained, corresponding to the photoluminescence peak wavelength of 1.57 mum at 10K. The nitrogen incorporation behavior in MBE growth and the quality improvement of the QW have been studied in detail. 1.3 mum GaInNAs/GaAs SQW laser and MQW resonant-cavity enhanced photodetector have been achieved.
Resumo:
The growth of GaInNAs/GaAs quantum wells (QW) was investigated by solid-source molecular beam epitaxy. N was introduced by a dc-active plasma source. The effect of growth conditions such as on the N incorporation and photoluminescence (PL) intensity of the QWs has been studied. The PL peak intensity decreased and the PL fun width at half maximum increased with increasing N concentrations. The highest N concentration of 2.6% in a GaInNAs/GaAs QW was obtained, and corresponding to a PL peak wavelength of 1.57 mum at 10K. Rapid thermal annealing at 850degreesC significantly improved the crystal quality of the QWs. An optimum annealing time of 5s at 850degreesC was obtained. A GaInNAs/GaAs SQW laser with the emitting wavelength of 1.2 mum and a high characteristic temperature of 115 K was achieved at room temperature.
Resumo:
Main application of 650nm band laser diodes are for digital versatile disk (DVD). We demonstrate here the 650nm AlGaInP LD grown by LP-MOCVD with the structure of selected buried ridge waveguide. Excellent performance of LD have been achieved such as threshold current, threshold current density as low as 20mA and 350A/cm(2) respectively at room temperature, the operating temperature up to 90 for the linear power output of 5mw. RIN is about -130db/Hz, The samples of LD have been certified by PUH manufacturers.
Resumo:
In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.
Resumo:
In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.
Resumo:
We fabricate 1.5 mu m InGaAsP/InP tunnel injection multiple-quantum-well (TI-MQW) Fabry-Perot (F-P) ridge lasers. The laser heterostructures, including an inner cladding layer and an InP tunnel barrier layer, are grown by metal-organic chemical-vapor deposition (MOCVD). Characteristic temperature.. 0 of 160K at 20 degrees C is obtained for 500-mu m-long lasers. T-0 is measured as high as 88K in the temperature range of 15-75 degrees C. Cavity length dependence of T-0 is investigated.
Resumo:
In this paper, we conduct a theoretical analysis of the design, fabrication, and performance measurement of high-power and high-brightness strained quantum-well lasers emitting at 0.98 mum, The material system of interest consists of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. Some key parameters of the laser structure are theoretically analyzed, and their effects on the laser performance are discussed. The laser material is grown by metal-organic chemical vapor deposition and demonstrates high quality with low-threshold current density, high internal quantum efficiency, and extremely low internal loss. High-performance broad-area multimode and ridge-waveguide single-mode laser devices are fabricated. For 100-mum-wide stripe lasers having a cavity length of 800 mum, a high slope efficiency of 1.08 W-A, a low vertical beam divergence of 34 degrees, a high output power of over 4.45 W, and a very high characteristic temperature coefficient of 250 K were achieved. Lifetime tests performed at 1.2-1.3 W (12-13 mW/mum) demonstrates reliable performance. For 4-mum-wide ridge waveguide single-mode laser devices, a maximum output power of 394 mW and fundamental mode power up to 200 mW with slope efficiency of 0.91 mW/mum are obtained.
Resumo:
A modified self-consistent method is introduced for the design of AlxGa1-xN/GaN step quantum well (SQW) with the position and energy-dependent effective mass. The effects of nonparabolicity are included. It is shown that the nonparabolicity effect is minute for the lowest subband energy level and grows in size for the higher subband states. The effects of nonparabolicity have significant influence on the transition energies and the oscillator strengths and should be taken into account in the investigation of the optical transitions. The strong asymmetric property introduced by the step quantum well magnifies the weak intersubband transition from the ground state to the third state (1 -> 3). It is shown that in an appropriate scope, the intersubband transition (1 -> 3) has the comparable oscillator strength with transition from the ground state to the second one (1 -> 2), which suggests the possible application of the two-color photodetectors. The results of this work should provide useful guidance for the design of optically pumped asymmetric quantum well lasers and quantum well infrared photodetectors (QWIPs). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Quantum dot (QD) lasers are expected to have superior properties over conventional quantum well lasers due to a delta-function like density of states resulting from three dimensional quantum confinements. QD lasers can only be realized till significant improvements in uniformity of QDs with free of defects and increasing QD density as well in recent years. In this paper, we first briefly give a review on the techniques for preparing QDs, and emphasis on strain induced self-organized quantum dot growth. Secondly, self-organized In(Ga)As/GaAs, InAlAs/GaAlAs and InAs/InAlAs Qds grown on both GaAs and InP substrates with different orientations by using MBE and the Stranski-Krastanow (SK) growth mode at our labs are presented. Under optimizing the growth conditions such as growth temperature, V/III ratio, the amount of InAs, InxGa1-xAs, InxAl1-xAs coverage, the composition x etc., controlling the thickness of the strained layers, for example, just slightly larger than the critical thickness and choosing the substrate orientation or patterned substrates as well, the sheet density of ODs can reach as high as 10(11) cm(-2), and the dot size distribution is controlled to be less than 10% (see Fig. 1). Those are very important to obtain the lower threshold current density (J(th)) of the QD Laser. How to improve the dot lateral ordering and the dot vertical alignment for realizing lasing from the ground states of the QDs and further reducing the Jth Of the QD lasers are also described in detail. Thirdly based on the optimization of the band engineering design for QD laser and the structure geometry and growth conditions of QDs, a 1W continuous-wave (cw) laser operation of a single composite sheet or vertically coupled In(Ga)As quantum dots in a GaAs matrix (see Fig. 2) and a larger than 10W semiconductor laser module consisted nineteen QD laser diodes are demonstrated. The lifetime of the QD laser with an emitting wavelength around 960nm and 0.613W cw operation at room temperature is over than 3000 hrs, at this point the output power was only reduced to 0.83db. This is the best result as we know at moment. Finally the future trends and perspectives of the QD laser are also discussed.
Resumo:
We have fabricated and characterized GaN-based vertical cavity surface emitting lasers (VCSELs) with a unique active region structure, in which three sets of InGaN asymmetric coupled quantum wells are placed in a half-wavelength (0.5 lambda) length. Lasing action was achieved under optical pumping at room temperature with a threshold pumping energy density of about 6.5 mJ/cm(2). The laser emitted a blue light at 449.5 nm with a narrow linewidth below 0.1 nm and had a high spontaneous emission factor of about 3.0x10(-2). The results indicate that this active region structure is useful in reducing the process difficulties and improving the threshold characteristics of GaN-based VCSELs.