70 resultados para Revolving funds
Resumo:
Si-doped ZnO can be synthesized on the surface of the early grown Zn2SiO4 nanostructures and form core/ shell coaxial heterostructure nanobelts with an epitaxial orientation relationship. A parallel interface with a periodicity array of edge dislocations and an inclined interface without dislocations can be formed. The visible green emission is predominant in PL spectra due to carrier localization by high density of deep traps from complexes of impurities and defects. Due to band tail localization induced by composition and defect fluctuation, and high density of free-carriers donated by doping, especially the further dissociation of excitons into free-carriers at high excitation intensity, the near-band-edge emission is dominated by the transition of free-electrons to free-holes, and furthermore, exhibits a significant excitation power-dependent red-shift characteristic. Due to the structure relaxation and the thermalization effects, carrier delocalization takes place in deep traps with increasing excitation density. As a result, the green emission passes through a maximum at 0.25I(0) excitation intensity, and the ratio of the violet to green emission increases monotonously as the excitation laser power density increases. The violet and green emission of ZnO nanostructures can be well tuned by a moderate doping and a variation in the excitation density.
Resumo:
We have investigated the magnetic properties of Co-doped zinc oxide (ZnO) film deposited on silicon substrate by magnetron sputtering. Co ions have a valence of 2+ and substitute for Zn sites in the lattice. By using a chemical etching method, an extrinsic ferromagnetism was demonstrated. The observed ferromagnetism is neither associated with magnetic precipitates nor with contamination, but originates from the silicon/silicon oxide interface. This interface ferromagnetism is characterized by being temperature independent and by having a parallel magnetic anisotropy. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989128]
Resumo:
The valence band offset (VBO) of the InN/GaAs heterojunction is directly determined by x-ray photoelectron spectroscopy to be 0.94 +/- 0.23 eV. The conduction band offset is deduced from the known VBO value to be 1.66 +/- 0.23 eV, and a type-II band alignment forms at the InN/GaAs heterojunction. (C) 2008 American Institute of Physics.
Resumo:
AlGaN/GaN high electron mobility transistor (HEMT) hetero-structures were grown on the 2-in Si (1 1 1) substrate using metal-organic chemical vapor deposition (MOCVD). Low-temperature (LT) AlN layers were inserted to relieve the tension stress during the growth of GaN epilayers. The grown AlGaN/GaN HEMT samples exhibited a maximum crack-free area of 8 mm x 5 mm, XRD GaN (0 0 0 2) full-width at half-maximum (FWHM) of 661 arcsec and surface roughness of 0.377 nm. The device with a gate length of 1.4 mu m and a gate width of 60 mu m demonstrated maximum drain current density of 304 mA/mm, transconductance of 124 mS/mm and reverse gate leakage current of 0.76 mu A/mm at the gate voltage of -10 V. (C) 2008 Published by Elsevier Ltd.
Resumo:
Low temperature (LT) AlN interlayers were used to effectively reduce the tension stress and micro-cracks on the surface of the GaN epilayer grown on Si (111) substrate. Optical Microscopy (OM), Atomic Force Microscopy (AFM), Surface Electron Microscopy (SEM) and X-Ray Diffraction (XRD) were employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). In addition, wet etching method was used to evaluate the defect of the GaN epilayer. The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness, interlayer number and growth temperature of the LT AlN interlayer. With the optimized LT AlN interlayer structures, high quality GaN epilayers with a low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes smart universal multiple-valued (MV) logic gates by transferring single electrons (SEs). The logic gates are based on MOSFET based SE turnstiles that can accurately transfer SEs with high speed at high temperature. The number of electrons transferred per cycle by the SE turnstile is a quantized function of its gate voltage, and this characteristic is fully exploited to compactly finish MV logic operations. First, we build arbitrary MV literal gates by using pairs of SE turnstiles. Then, we propose universal MV logic-to-value conversion gates and MV analog-digital conversion circuits. We propose a SPICE model to describe the behavior of the MOSFET based SE turnstile. We simulate the performances of the proposed gates. The MV logic gates have small number of transistors and low power dissipations.
Resumo:
The valence band offset (VBO) of MgO (111)/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 3.65 +/- 0.23 eV and the conduction band offset is deduced to be 0.92 +/- 0.23 eV, indicating that the heterojunction has a type- I band alignment. The accurate determination of the valence and conduction band offsets is important for the applications of MgO/SiC optoelectronic devices. (C) 2008 American Institute of Physics.
Resumo:
This paper proposes compact adders that are based on non-binary redundant number systems and single-electron (SE) devices. The adders use the number of single electrons to represent discrete multiple-valued logic state and manipulate single electrons to perform arithmetic operations. These adders have fast speed and are referred as fast adders. We develop a family of SE transfer circuits based on MOSFET-based SE turnstile. The fast adder circuit can be easily designed by directly mapping the graphical counter tree diagram (CTD) representation of the addition algorithm to SE devices and circuits. We propose two design approaches to implement fast adders using SE transfer circuits the threshold approach and the periodic approach. The periodic approach uses the voltage-controlled single-electron transfer characteristics to efficiently achieve periodic arithmetic functions. We use HSPICE simulator to verify fast adders operations. The speeds of the proposed adders are fast. The numbers of transistors of the adders are much smaller than conventional approaches. The power dissipations are much lower than CMOS and multiple-valued current-mode fast adders. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We report the synthesis and characterization of Zn-doped InN nanorods by metal-organic chemical vapor deposition. Electron microscopy images show that the InN nanorods are single-crystalline structures and vertically well-aligned. Energy-dispersive X-ray spectroscopy analyses suggest that Zn ions are distributed nonhomogenously in InN nanorods. Simulations based on diffusion model show that the doping concentration along the radial direction of InN nanorod is bowl-like from the exterior to the interior, the doping concentration decreases, and Such dopant distribution result in a bimodal EDXS spectrum of Zn across the nanorod. The study of the mechanism of doping effect is useful for the design of InN-based nanometer devices. Also, high-quality Zn-doped InN nanorods will be very attractive as building blocks for nano-optoelectronic devices.'
Resumo:
The interface dipole and its role in the effective work function (EWF) modulation by Al incorporation are investigated. Our study shows that the interface dipole located at the high-k/SiO2 interface causes an electrostatic potential difference across the metal/high-k interface, which significantly shifts the band alignment between the metal and high-k, consequently modulating the EWF. The electrochemical potential equalization and electrostatic potential methods are used to evaluate the interface dipole and its contribution. The calculated EWF modulation agrees with experimental data and can provide insight to the control of EWF in future pMOS technology.
Resumo:
A sizable spin-dependent photocurrent related to the interband transition in InN films is observed. The surface charge accumulation layer is suggested to be the origin of the circular photogalvanic current, which is consistent with the result of uniaxial strain experiments and the comparison of front and back incidence. The homogeneous photocurrent demonstrates the existence of spin splitting in the InN surface layer, and the structure inversion asymmetry (SIA)-dominant mechanism indicates a great possibility for the manipulation of spin splitting, which would undoubtedly benefit further research and applications of spintronics. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
Hierarchical heterostructures of zinc antimonate nanoislands on ZnO nanobelts were prepared by simple annealing of the polymeric precursor. Sb can promote the growth of ZnO nanobelts along the [552] direction because of the segregation of Sb dopants on the +(001) and (110) surfaces of ZnO nanobelts. Furthermore, the ordered nanoislands of toothlike ZnSb2O6 along the [001](ZnO) direction and rodlike Zn7Sb2O12 along the [110](ZnO) direction can be formed because of the match relation of the lattice and polar charges between ZnO and zinc antimonate. The incorporation of Sb in a ZnO lattice induces composition fluctuation, and the growth of zinc antimonate nanoislands on nanobelt sides induces interface fluctuation, resulting in dominance of the bound exciton transition in the room temperature near-band-edge (NBE) emission at relatively low excitation intensity. At high excitation intensity, however, Auger recombination makes photogenerated electrons release phonon and relax from the conduction band to the trap states, causing the NBE emission to gradually saturate and redshift with increasing excitation intensity. The green emission more reasonably originates from the recombination of electrons in shallow traps with doubly charged V-O** oxygen vacancies. Because a V-O** center can trap a photoactivated electron and change to a singly charged oxygen vacancy V-O* state, its emission intensity exhibits a maximum with increasing excitation intensity.
Resumo:
AlGaN-based resonant-cavity-enhanced (RCE) p-i-n photodetectors (PDs) for operating at the wavelength of 330 nm were designed and fabricated. A 20.5-pair AlN/Al0.3Ga0.7N distributed Bragg reflector (DBR) was used as the back mirror and a 3-pair AlN/Al0.3Ga0.7N DBR as the front one. In the cavity is a p-GaN/i-GaN/n-Al0.3Ga0.7N structure. The optical absorption of the RCE PD structure is at most 59.8% deduced from reflectance measurement. Selectively enhanced by the cavity effect, a response peak of 0.128 A/W at 330 nm with a half-peak breadth of 5.5 nm was obtained under zero bias. The peak wavelength shifted 15 nm with the incident angle of light increasing from 0 degrees to 60 degrees.
Resumo:
Using an all-electron band structure approach, we have systematically calculated the natural band offsets between all group IV, III-V, and II-VI semiconductor compounds, taking into account the deformation potential of the core states. This revised approach removes assumptions regarding the reference level volume deformation and offers a more reliable prediction of the "natural" unstrained offsets. Comparison is made to experimental work, where a noticeable improvement is found compared to previous methodologies.
Resumo:
InN thin films with different thicknesses are grown by metal organic chemical vapor deposition, and the dislocations, electrical and optical properties are investigated. Based on the model of mosaic crystal, by means of X-ray diffraction skew geometry scan, the edge dislocation densities of 4.2 x 10(10) cm(-2) and 6.3 x 10(10) cm(-2) are fitted, and the decrease of twist angle and dislocation density in thicker films are observed. The carrier concentrations of 9 x 10(18) cm(-3) and 1.2 x 10(18) cm(-3) are obtained by room temperature Hall effect measurement. V-N is shown to be the origin of background carriers, and the dependence of concentration and mobility on film thickness is explained. By the analysis of S-shape temperature dependence of photoluminescence peak, the defects induced carrier localization is suggested be involved in the photoluminescence. Taking both the localization and energy band shrinkage effect into account, the localization energies of 5.05 meV and 5.58 meV for samples of different thicknesses are calculated, and the decrease of the carrier localization effect in the thicker sample can be attributed to the reduction of defects.