32 resultados para PLD
Resumo:
磷脂酰甘油(PG)是植物类囊体膜中唯一的磷脂,在它的sn-2位上总是连着一个棕榈酸(16:0)或反式十六碳烯酸(16:1 trans)。由于PG的分子结构独特,对它的功能已有了很多研究,目前认为PG在维持类囊体膜的结构与功能方面具有非常重要的作用。缺磷胁迫下,蓝藻、衣藻及拟南芥、大麦等物种中均检测到了PG含量的下降。对这一现象的常见解释是缺磷导致了PG生物合成受阻,从而引起了其含量的降低。但迄今为止尚没有试验证据支持。本研究比较了缺磷对不同叶龄的小麦与烟草叶片中PG含量与PG水解酶的活性的影响,同时对缺磷叶片酶粗提液水解外源PG后的主要产物、几种磷脂酶抑制剂对上述酶反应的影响等进行了研究,以阐明缺磷条件下叶片中PG含量下降的主要原 因。 缺磷小麦第一叶完全展开时,PG含量与PG水解酶活性均与对照相似;而第三叶完全展开时,尽管缺磷第三叶中PG水解酶活性也与对照相似,但其PG含量低于对照。这一结果表明,在小麦叶片完全展开之前,缺磷条件未影响叶片中的PG水解酶活性,第三叶中较低的PG含量应由PG的生物合成受阻引起。并且,由于缺磷植株第一叶完全展开时PG含量未受影响而第三叶中却表现出了轻微降低,可以推测叶片萌发越晚,PG生物合成受到的抑制就会越严重。 为了研究叶片衰老过程中PG含量下降的原因,我们比较了6,10,14与18日龄时缺磷与对照小麦植株第一叶中PG的相对含量与PG水解酶活性。研究发现:6日龄时,刚刚完全展开的缺磷和对照小麦第一叶中无论是PG含量还是PG水解酶活性都较为相似;而随着叶片的逐渐衰老,缺磷植株第一叶中PG含量大幅度下降,同时伴随着PG水解酶活性的急剧上升。18日龄时,缺磷小麦第一叶中的PG含量较对照降低了69.1%,其PG水解酶活性也远高于对照,37ºC下温育30min后,缺磷叶片的酶粗提液使外源PG含量降低了74.16%,而对照中只降低了13.7%。上述结果表明,缺磷条件下,小麦叶片中PG含量降低的程度与PG水解酶活性的强弱密切相关,PG水解加剧是导致老叶中PG含量降低的一个重要原因。 磷脂酶是水解磷脂的主要酶类。目前在植物体中发现的磷脂酶种类主要有磷脂酶D(PLD)、磷脂酶C(PLC)与磷脂酶A(PLA)。通过薄层层析(TLC),我们发现缺磷小麦叶片的酶粗提液水解外源PG后的主要产物是磷脂酸(PA)、二脂酰甘油(DAG)与游离脂肪酸(FFA)。将n-丁醇加入到缺磷小麦叶片的体外酶反应体系中后,观察到PA、DAG与FFA的生成量均表现出一定程度的降低。由于n-丁醇是PA经PLD途径生成的抑制剂,因此,上述结果表明PLD参与了缺磷条件下小麦叶片中PG的水解。硫酸新霉素是PLC的非特异性抑制剂,低浓度的硫酸新霉素(100μM 和 200μM )加入到缺磷小麦叶片的体外酶反应体系后,三种产物的生成受到了严重抑制,表明PLC也与缺磷叶片中PG的降解密切相关。 为了进一步分析缺磷导致PG含量降低的原因,我们以烟草为试验材料,检测了缺磷胁迫对烟草嫩叶和老叶中的PG含量、PG水解酶活性、与PG降解相关的酶的种类及PLC、PLDα、PLDβ与PAT-1基因在mRNA上表达水平的的影响。结果表明,缺磷烟草叶片中PG含量的降低由PG生物合成受阻与PG降解加剧共同导致,PLC和PLD活性与烟草叶片中PG的降解有关。缺磷植株老叶中PG水解酶活性及PLC、PLDα、PLDβ基因在mRNA水平上的表达量均高于对照,表明在磷胁迫条件下,老叶中PG水解酶活性可能受到转录水平上的调节, PLC、PLDα、PLDβ转录活性的增强导致了PLC、PLD活性加强,从而引起PG降解的加剧,最终导致了PG含量的降低。与PLC、PLDα和PLDβ不同,缺磷胁迫对patatin蛋白(表现PLA2活性)的编码基因PAT-1在转录水平上的表达无影响,TLC分析PG的水解产物也未检测到溶血磷脂酰甘油(LPG)的生成。由此可见,PLA活性可能与缺磷条件下PG的降解无关。
Resumo:
ZnO thin films were deposited on glass substrates at room temperature (RT) similar to 500 degrees C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 degrees C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments: the grain size increased and stress relaxed for the films deposited at 200-500 degrees C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that E-g of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 degrees C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.
Resumo:
ZnO films are prepared on glass substrates by pulsed laser deposition (PLD) at different oxygen pressures, and the effects of oxygen pressure on the structure and optoelectrical properties of as-grown ZnO films are investigated. The results show that the crystallite size and surface roughness of the films increase, but the carrier concentration and optical energy gap E-g decrease with increasing oxygen pressure. Only UV emission is found in the photoluminescence (PL) spectra of all the samples, and its intensity increases with oxygen pressure. Furthermore, there are marked differences in structure and properties between the films grown at low oxygen pressures (0.003 and 0.2 Pa) and the films grown at high oxygen pressures (24 and 150 Pa), which is confirmed by the fact that the crystallite size and UV emission intensity markedly increase, but the carrier concentration markedly decreases as oxygen pressure increases from 0.2 to 24 Pa. These results show that the crystal quality, including the microstructural quality and stoichiometry proportion, of the prepared ZnO films improves as oxygen pressure increases, particularly from 0.2 to 24 Pa.
Resumo:
ZnO thin films were prepared by pulsed laser deposition (PLD) on glass substrates with growth temperature from room temperature (RT) to 500 degrees C. The effects of substrate temperature on the structural and optical properties of ZnO films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra, and RT photoluminescence (PL) measurements. The results showed that crystalline and (0 0 2)-oriented ZnO films were obtained at all substrate temperatures. As the substrate temperature increased from RT to 500 degrees C, the ratio of grain size in height direction to that in the lateral direction gradually decreased. The same grain size in two directions was obtained at 200 degrees C, and the size was smallest in all samples, which may result in maximum E, and E-0 of the films. UV emission was observed only in the films grown at 200 degrees C, which is probably because the stoichiometry of ZnO films was improved at a suitable substrate temperature. It was suggested that the UV emission might be related to the stoichiometry in the ZnO film rather than the grain size of the thin film. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures, 200 nm silver films as the contact metal were deposited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts between Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150A degrees C and 200A degrees C. Ohmic contacts were formed while the growth temperatures were lower than 150A degrees C or higher than 200A degrees C. After analysis, the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.
Resumo:
C-axis-orientated ZnO thin films were prepared on glass substrates by pulsed-laser deposition (PLD) technique in an oxygen-reactive atmosphere, using a metallic Zn target. The effects of growth condition such as laser energy and substrate temperature on the structural and optical properties of ZnO films had been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra and room-temperature (RT) photoluminescence (PL) measurements. The results showed that the thickness, crystallite size, and compactness of ZnO films increased with the laser energy and substrate temperature. Both the absorption edges and the UV emission peaks of the films exhibited redshift, and UV emission intensity gradually increased as the laser energy and substrate temperature increased. From these results, it was concluded that crystalline quality of ZnO films was improved with increasing laser energy and substrate temperature. (c) 2007 Elsevier B.N. All rights reserved.
Resumo:
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 degrees C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19 degrees with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 degrees C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
ZnO, as a wide-band gap semiconductor, has recently become a new research focus in the field of ultraviolet optoelectronic semiconductors. Laser molecular beam epitaxy (L-MBE) is quite useful for the unit cell layer-by-layer epitaxial growth of zinc oxide thin films from the sintered ceramic target. The ZnO ceramic target with high purity was ablated by KrF laser pulses in an ultra high vacuum to deposit ZnO thin film during the process of L-MBE. It is found that the deposition rate of ZnO thin film by L-MBE is much lower than that by conventional pulsed laser deposition (PLD). Based on the experimental phenomena in the ZnO thin film growth process and the thermal-controlling mechanism of the nanosecond (ns) pulsed laser ablation of ZnO ceramic target, the suggested effective ablating time during the pulse duration can explain the very low deposition rate of the ZnO film by L-MBE. The unique dynamic mechanism for growing ZnO thin film is analyzed. Both the high energy of the deposition species and the low growth rate of the film are really beneficial for the L-MBE growth of the ZnO thin film with high crystallinity at low temperature.
Resumo:
利用脉冲激光沉积(PLD)方法在Si衬底上制备了ZnO单晶体薄膜,并在不同温度下生长了Ag膜作为肖特基电极,研究了Ag与ZnO的接触特性.利用X射线衍射仪、扫描电子显微镜和Ⅰ-Ⅴ测试方法对样品的晶体质量、结构和电学性质进行了分析.结果表明,ZnO薄膜具有高度的c轴择优取向,Ag膜随生长温度的不同的晶体质量有较大差异.样品在室温下的Ⅰ-Ⅴ测试结果表明Ag电极的生长温度对Ag/ZnO接触性能有重要影响.在150℃和200℃生长的Ag电极实现了Ag与ZnO的肖特基接触,电极生长温度低于150℃和高于200℃的样品Ag与ZnO均为欧姆接触.经过分析,肖特基接触的形成依赖于在Ag与ZnO接触界面处形成的p型反型层.
Resumo:
对于在Si(111)上用氧离子束辅助(O~+-assisted)脉冲激光淀积(PLD)生长的ZnO薄膜,用X射线光电子能谱(XPS)深度剖析方法对长成的样品进行了异位测试,分析了导致各峰峰位能移的因素;通过异位与原位XPS谱图的比较,指出O+-assisted PLD法生成的ZnO薄膜中存在孔隙;指出生长出的ZnO薄膜中含si成分的厚度不超过18 nm;同时探讨了在长成的ZnO/Si上继续生长GaN薄膜的可行性.
Resumo:
用脉冲激光沉积(PLD)方法在Si(111)衬底上制备了ZnO薄膜。以325nmHe-Cd激光器为光源对薄膜进行了荧光光谱分析,用X射线衍射仪(XRD)和原子力显微镜(AFM)分别对薄膜的结构和形貌进行了分析。脉冲激光沉积方法的主要生长参量为氧压、激光重复频率、生长温度和激光能量。通过控制这些参量变量,研究了这些参量对ZnO薄膜发光特性的影响,得到了用于紫外发光的ZnO薄膜生长的优化条件
Resumo:
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (similar to 445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
Capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection was used to explore the kinetics ofthe enzymatic reaction. The different effects ofreaction conditions including the concentration of Mn2l, incubation temperature and pH on PFOlidase (PLD, EC 3.4.13.9) activity in erythrocyte lysates against three different substrates, Gly-Pro, Val-Pro and Leu-Pro were investigated. Also, the effects of colchicine which can prevent or delay cancer ofliver on the PLD activity were studied.
Resumo:
A new method for prolidase (PLD, EC 3.4.13.9) activity assay was developed based on the determination of proline produced from enzymatic reaction through capillary electrophoresis (CE) with tris(2,2'-bipyridyl)ruthenium(11) [Ru(bpy)(3)(2+)] electrochemiluminescence detection (ECL). A detection limit of 12.2 fmol (S/N = 3) for proline, corresponding to 1.22 x 10(-8) units of prolidase catalyzing for 1 min was achieved. PLD activity determined by CE-ECL method was in agreement with that obtained from the classical Chinard's one. CE-ECL showed its powerful resolving ability and selectivity as no sample pretreatmentwas needed and no interference existed. The clinical utility of this method was successfully demonstrated by its application to assay PLD activity in the serum of diabetic patients in order to evaluate collagen degradation in diabetes mellitus (DM). The results indicated that enhanced collagen degradation occurred in DM.
Resumo:
We explored the CE with Ru(bpy)(3)(2+) electrochemiluminescence detection for the kinetic study of drug-enzyme interaction. Effects of four nonsteroidal anti - inflammatory drugs including aspirin, paracetamol, sodium salicylate and phenacetin on prolidase (PLD) activity in erythrocytes were investigated. Aspirin enhanced PLD activity whereas the other three had inhibiting effects. This may reveal their different effects on the collagen biosynthesis and catabolism that influence tumor invasiveness. Kinetic study of paracetamol on PLD showed that the value of Michaelis constant Km for PLD was 1.23 mM. The mechanism of PLD inhibition by paracetamol is noncompetitive inhibition, and the inhibitor constant K-i value obtained in our research was 9.73 x 10(3) mu g/L.