182 resultados para Máquinas de vapor
Resumo:
Nonpolar a-plane (1120) ZnO thin films have been fabricated on gamma-LiAlO2 (302) substrates via the low-pressure metal-organic chemical vapor deposition. An obvious intensity variation of the E-2 mode in the Raman spectra indicates that there exhibits in-plane optical anisotropy in the a-plane ZnO thin films. Highly-oriented uniform grains of rectangular shape can be seen from the atomic force microscopy images, which mean that the lateral growth rate of the thin films is also anisotropic. It is demonstrated experimentally that a buffer layer deposited at a low temperature (200 degrees C) can improve the structural and optical properties of the epilayer to a large extent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Non-polar (1 (1) over bar 00)m-plane ZnO thin film has been prepared on gamma-LiAlO2 (100)substrate via the low pressure metal organic chemical vapor deposition. Obvious intensity variation of the E-2 mode in the polarized Raman spectra and the absorption edge shift in the polarized optical transmission spectra indicate that the m-plane film exhibits optical anisotropy, which have applications in certain optical devices, such as the UV modulator and polarization-dependent beam switch. From the atomic force microscopy images, highly-oriented uniform-sized grains of rectangular shape were observed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper reports that Al1-xInxN epilayers were grown on GaN template by metalorganic chemical vapor deposition with an In content of 7%-20%. X-ray diffraction results indicate that all these Al1-xInxN epilayers have a relatively low density of threading dislocations. Rutherford backscattering/channeling measurements provide the exact compositional information and show that a gradual variation in composition of the Al1-xInxN epilayer happens along the growth direction. The experimental results of optical reflection clearly show the bandgap energies of Al1-xInxN epilayers. A bowing parameter of 6.5 eV is obtained from the compositional dependence of the energy gap. The cathodoluminescence peak energy of the Al1-xInxN epilayer is much lower than its bandgap, indicating a relatively large Stokes shift in the Al1-xInxN sample.
Resumo:
We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.
Resumo:
We report on normal incidence p-i-n heterojunction photodiodes operating in the near-infrared region and realized in pure germanium on planar silicon substrate. The diodes were fabricated by ultrahigh vacuum chemical vapor deposition at 600 degrees C without thermal annealing and allowing the integration with standard silicon processes. Due to the 0.14% residual tensile strain generated by the thermal expansion mismatch between Ge and Si, an efficiency enhancement of nearly 3-fold at 1.55 mu m and the absorption edge shifting to longer wavelength of about 40 nm are achieved in the epitaxial Ge films. The diode with a responsivity of 0.23 A/W at 1.55 mu m wavelength and a bulk dark current density of 10 mA/cm(2) is demonstrated. These diodes with high performances and full compatibility with the CMOS processes enable monolithically integrating microphotonics and microelectronics on the same chip.
Resumo:
Thick nonpolar (10 (1) over bar0) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (10 (1) over bar(3) over bar) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high. resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (10 (1) over bar0) and (10 (1) over bar(3) over bar) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers. [DOI: 10.1143/JJAP.47.3346]
Resumo:
Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.
Resumo:
High-quality Ge epilayer on Si(1 0 0) substrate with an inserted low-temperature Ge seed layer and a thin Si0.77Ge0.23 layer was grown by ultrahigh vacuum chemical vapor deposition. The epitaxial Ge layer with surface root-mean-square roughness of 0.7 nm and threading dislocation density of 5 x 10(5) cm(-2) was obtained. The influence of low temperature Ge seed layer on the quality of Ge epilayer was investigated. We demonstrated that the relatively higher temperature (350 degrees C) for the growth of Ge seed layer significantly improved the crystal quality and the Hall hole mobility of the Ge epilayer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality mu c-Si:H films have been achieved with a high deposition rate of 7.8 angstrom/s at a high pressure. The V-oc of 560 mV and the FF of 0.70 have been achieved for a single-junction mu c-Si:H p-i-n solar cell at a deposition rate of 7.8 angstrom/s.
Resumo:
ZnO films were grown at low pressure in a vertical metal-organic vapor deposition (MOCVD) reactor with a rotating disk. The structural and morphological properties of the ZnO films grown at different disk rotation rate (DRR) were investigated. The growth rate increases with the increase of DRR. The ZnO film grown at the DRR of 450 revolutions per minute (rpm) has the lowest X-ray rocking curve full width at half maximum and shows the best crystalline quality and morphology. In addition, the crystalline quality and morphology are improved as the DRR increased but both are degraded when the DRR is higher than 450 rpm. These results can help improve in understanding the rotation effects on the ZnO films grown by MOCVD. (C) 2007 Elsevier B.V. All rights reserved.