728 resultados para GaN Buffer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this letter, we investigated the effect of the buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs(0 0 1) substrate. The reflection high-energy electron diffraction (RHEED) pattern of the low-temperature GaN buffer layers shows that both the deposition temperature and time are important in obtaining a smooth surface. Four-circle X-ray double-crystal diffraction (XRDCD) reciprocal space mapping was used to study the hexagonal phase inclusions in the cubic GaN (c-GaN) films grown on the buffer layers. The calculation of the volume contents of the hexagonal phase shows that higher temperature and longer time deposition of the buffer layer is not preferable for growing pure c-GaN film. Under optimized condition, 47 meV FWHM of near band gap emission of the c-GaN film was achieved. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present some results on the effect of initial buffer layer on the crystalline quality of Cubic GaN epitaxial layers grown on GaAs(100) substrates by metalorganic chemical vapor deposition. Photoluminescence and Hall measurements were performed to characterize the electrical and optical properties of cubic GaN. The crystalline quality subsequently grown high-temperature (HT) cubic GaN layers strongly depended on thermal effects during the temperature ramping process after low temperature (LT) growth of the buffer layers. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to investigate this temperature ramping process. Furthermore, the role of thermal treatment during the temperature ramping process was identified. Using the optimum buffer layer, the full width at half maxim (FWHM) at room temperature photoluminescence 5.6 nm was achieved. To our knowledge, this is the best FWHM value for cubic GaN to date. The background carrier concentration was as low as 3 x 10(13) cm(-3). (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growth and fabrication of GaN/InGaN multiple quantum well (MQW) light emitting diodes ( LEDs) on ( 100) beta-Ga2O3 single crystal substrates by metal-organic chemical vapour deposition (MOCVD) technique are reported. x-ray diffraction (XRD) theta-2 theta. scan spectroscopy is carried out on the GaN buffer layer grown on a ( 100) beta-Ga2O3 substrate. The spectrum presents several sharp peaks corresponding to the ( 100) beta-Ga2O3 and ( 004) GaN. High-quality ( 0002) GaN material is obtained. The emission characteristics of the GaN/InGaN MQW LED are measurement. The first green LED on beta-Ga2O3 with vertical current injection is demonstrated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-mobility Al0.3Ga0.7N/AlN/GaN high electron mobility transistors (HEMT) structure has been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. Electron mobility of 2185 cm(2)/V s at room temperature and 15,400 cm(2)/V s at 80 K with 2DEG density of 1.1 X 10(13) cm(-2) are achieved. The corresponding sheet resistance of the HEMT wafer is 258.7 Omega/sq. The AlN interfacial layer between the GaN buffer and the AlGaN barrier layer reduces the alloy disorder scattering. X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements have been conducted, and confirmed that the wafer has a high crystal quality. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The stress states in unintentionally doped GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire, and their effects on optical properties of GaN films were investigated by means of room-temperature confocal micro-Raman scattering and photoluminescence techniques. Relatively large tensile stress exists in GaN epilayers grown on Si and 6H-SiC while a small compressive stress appears in the film grown on sapphire. The latter indicates effective strain relaxation in the GaN buffer layer inserted in the GaN/sapphire sample, while the 50-nm-thick AlN buffer adopted in the GaN/Si sample remains highly strained. The analysis shows that the thermal mismatch between the epilayers and the substrates plays a major role in determining the residual strain in the films. Finally, a linear coefficient of 21.1+/-3.2 meV/GPa characterizing the relationship between the luminescent bandgap and the biaxial stress of the GaN films is obtained. (C) 2003 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of reactor pressure on GaN nucleation layer (NL) and the quality of subsequent GaN on sapphire is studied. The layers were grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on c-plane sapphire substrates and investigated by in situ laser reflectometry, atomic force microscope, scanning electron microscope, X-ray diffraction and photoluminescence. With the increase of reactor pressure prior to high-temperature GaN growth, the size of GaN nuclei formed after annealing decreases, the spacing between nucleation sites increases and the coalescence of GaN nuclei is deferred. The optical and crystalline qualities of GaN epilayer were improved when NLs were deposited at high pressure. The elongated lateral overgrowth of GaN islands is responsible for the quality improvement. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quaternary InAlGaN film has been grown directly on top of low-temperature-deposited GaN buffer layer by low-pressure metalorganic vapor phase epitaxy. High-resolution X-ray diffraction and photoluminescence (PL) results show that the film has good crystal quality and optical property. Temperature-dependent PL and time-resolved PL (TRPL) have been employed to study the carriers recombination dynamics in the film. The TRPL signals can be well fitted as a stretched exponential function exp[-(t/tau)(beta)] from 14 to 250 K, indicating that the emission is attributed to the radiative recombination of excitons localized in disorder quantum nanostructures such as quantum disks originating from indium (In) clusters or In composition fluctuation. The cross-sectional high-resolution electron microscopy measurement further proves that there exist the disorder quantum nanostructures in the quaternary. By investigating the dependence of the exponential parameter beta on the temperature, it is shown that the multiple trapping-detrapping mechanism dominates the diffusion among the localized states. The localized states are considered to have two-dimensional density of states (DOS) at 250 K, since radiative recombination lifetime tau(r) increases linearly with increasing temperature. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GaN epilayers on sapphire substrate grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor were investigated. Samples were characterized by X-ray diffraction (XRD), Raman scattering, atomic force microscopy (AFM) and photoluminescence (PL) measurements. The influence of the temperature changes between low temperature (LT) deposited GaN buffer and high temperature (WT) grown GaN epilayer on crystal quality of epilayer was extensively studied. The effect of in situ thermal annealing during the growth on improving the GaN layer crystal quality was demonstrated and the possible mechanism involved in such a growth process was discussed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the growth of GaN buffers by metalorganic chemical vapor deposition (MOCVD) on GaAs (100) substrates. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to study the dependence of the nucleation on the growth temperature, growth rate, annealing effect, and growth time. A two-step growth sequence must be used to optimize and control the nucleation and the subsequent growth independently. The size and distribution of islands and the thickness of buffer layers have a crucial role on the quality of GaN layers. Based on the experimental results, a model was given to interpret the formation of hexagonal-phase GaN in the cubic-phase GaN layers. Using an optimum buffer layer, the strong near-band emission of cubic GaN with full-width at half maximum (FWHM) value as small as 5.6 nm was observed at room temperature. The background carrier concentration was estimated to be in the range of 10(13) similar to 10(14) cm(-3).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel AlGaN/GaN/GaN/GaN double heterojunction high electron mobility transistors (DH-HEMTS) structure with an AlN interlayer on sapphire substrate has been grown by MOCVD. The structure featured a 6-10 nm In0.1Ga0.9N layer inserted between the GaN channel and GaN buffer. And wer also inserted one ultrathin. AlN interlayer into the Al/GaN/GaN interface, which significantly enhanced the mobility of two-dimensional electron gas (2DEG) existed in the GaN channel. AFM result of this structure shows a good surface morphology and a low dislocation density, with the root-mean-square roughness (RMS) of 0.196 nm for a scan area of 5 mu m x 5 mu m. Temperature dependent Hall measurement was performed on this sample, and a mobility as high as 1950 cm(2)/Vs at room temperature (RT) was obtained. The sheet carrier density was 9.89 x10(12) cm(2), and average sheet resistance of 327 Omega/sq was achieved. The mobility obtained in this paper is about 50% higher than other results of similar structures which have been reported. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thick GaN films were grown on sapphire in a home-made vertical HVPE reactor. Effect of nucleation treatments on the properties of GaN films was investigated, including the nitridation of sapphire, low temperature GaN buffer and MOCVD-template. Various material characterization techniques, including AFM, SEM, XRD, CL and PL have been used to assess these GaN epitaxial films. It was found that the surface of sapphire after high temperature nitridation was flat and showed high density nucleation centers. In addition, smooth Ga-polarity surface of epitaxial layer can be obtained on the nitridation sapphire placed in air for several days due to polarity inversion. This may be caused by the atoms re-arrangement because of oxidation. The roughness of N-polarity film was caused by the huge inverted taper domains, which can penetrate up to the surface. The low temperature GaN buffer gown at 650 degrees C is favorable for subsequent epitaxial film, which had narrow FWHM of 307 arcsec. The epitaxial growth on MOCVD-template directly came into quasi-2D growth mode due to enough nucleation centers, and high quality GaN films were acquired with the values of the FWHM of 141 arcsec for (002) reflections. After etching in boiled KOH, that the total etch-pit density was only 5 x 106 cm(-2) illustrated high quality of the thick film on template. The photoluminescence spectrum of GaN film on the MOCVD-template showed the narrowest line-width of the band edge emission in comparison with other two growth modes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growth,fabrication,and characterization of 0.2μm gate-length AlGaN/GaN HEMTs,with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described.The unintentionally doped 2.5μm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of 741cm2/(V·s) at an electron concentration of 1.52×1016 cm-3.The resistivity of the thick GaN buffer layer is greater than 108Ω·cm at room temperature.The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9Ω/□ with uniformity better than 96%.Devices of 0.2μm×40μm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of77GHz.The AlGaN/GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8GHz.The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GaN buffer layers (thickness ~60nm) grown on GaAs(001) by low-temperature MOCVD are investigated by X-ray diffraction pole figure measurements using synchrotron radiation in order to understand the heteroepitaxial growth features of GaN on GaAs(001) substrates. In addition to the epitaxially aligned crystallites,their corresponding twins of the first and the second order are found in the X-ray diffraction pole figures. Moreover, { 111 } q scans with χ at 55° reveal the abnormal distribution of Bragg diffractions. The extra intensity maxima in the pole fig ures shows that the process of twinning plays a dominating role during the growth process. It is suggested that the polarity of { 111 } facets emerged on (001) surface will affect the growth-twin nucleation at the initial stages of GaN growth on GaAs(001) substrates. It is proposed that twinning is prone to occurring on { 111 } B, N-terminated facets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AlInGaN quaternary alloys were successfully grown on sapphire substrate by radio-frequency plasma-excited molecular beam epitaxy (RF-MBE). AlInGaN quaternary alloys with different compositions were acquired by changing the Al cell's temperature. The streaky RHEED patterns were observed during AlInGaN quaternary alloys growth. Scanning Electron Microscope (SEM), Rutherford back-scattering spectrometry (RBS), X-Ray diffraction (XRD) and Cathodoluminescence (CL) were used to characterize the structural and optical properties of the AlInGaN alloys. The experimental results show that the AlInGaN quaternary alloys grow on the GaN buffer in the layer-by-layer growth mode. When the Al cell's temperature is 920 degrees C, the Al/In ratio in the AlInGaN quaternary alloys is about 4.7, and the AlInGaN can acquire better crystal and optical quality. The X-ray and CL full-width at half-maximum (FWHM) of the AlInGaN are 5arcmin and 25nm, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new method to form nanoscale InGaN quantum dots using MOCVD is reported, This method is much different from a method. which uses surfactant or the Stranski-Krastannow growth mode. The dots were formed by increasing the energy barrier for adatoms, which are hopping by surface passivation, and by decreasing the growth temperature. Thus, the new method can be called as a passivation-low-temperature method. Regular high-temperature GaN films were grown first and were passivated. A low-temperature thin layer of GaN dot was then deposited on the surface that acted as the adjusting layer. At last the high-density InGaN dots could be fabricated on the adjusting layer. Atomic force microscopy measurement revealed that InGaN dots were small enough to expect zero-dimensional quantum effects: The islands were typically 80 nm wide and 5 nm high. Their density was about 6 x 10(10) cm(-2). Strong photoluminescence emission from the dots is observed at room temperature, which is much stronger than that of the homogeneous InGaN film with the same growth time. Furthermore, the PL emission of the GaN adjusting layer shows 21 meV blueshift compared with the band edge emission of the GaN due to quantum confine effect. (C) 2002 Elsevier Science B.V. All rights reserved.