164 resultados para FOURIER TRANSFORM INFRARED SPECTROSCOPY
Resumo:
Two kinds of silanes, 3-glycidoxypropyltrimethoxysilane (GLYMO) and 3-trimethoxysililpropylmethacrylate (TMSPM), were used to prepare ormosil waveguide films by the sol-gel method. Thirty percent Ti(OBu)(4) and 70% silane were contained in the precursor sets. The properties of films were measured by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), m-line and scattering-detection method. The films from GLYMO and TMSPM precursors exhibit similar thickness (2.58 mu m for GLYMO, 2.51 mu m for TMSPM) and refractive index (1.5438 for GLYMO, 1.5392 for TMSPM, lambda=632.8 nm), but the film from TMSPM precursor has higher propagation loss (1.024 dB/cm, lambda=632.8 nm) than the film prepared from GLYMO (0.569 dB/cm, lambda=632.8 nm). Furthermore, the film prepared from TMSPM is easy to be opaque and cracks during coating whereas the same phenomenon was not found for the film prepared with GLYMO. It is confirmed that GLYMO is a better precursor than TMSPM for waveguide film preparation. (C) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Sol-gel derived TiO2/SiO2/ormosil hybrid planar waveguides have been deposited on soda-lime glass slides and silicon substrates, films were heat treated at 150 degreesC for 2 h or dried at room temperature. Different amounts of water were added to sols to study their impacts on microstructures and optical properties of films. The samples were characterized by m-line spectroscopy, Fourier transform infrared spectroscopy (FT-IR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), thermal analysis instrument and scattering-detection method. The refractive index was found to have the largest value at the molar ratio H2O/OR = 1 in sol (OR means -OCH3, -OC2H5 and -OC4H9 in the sol), whereas the thickest film appears at H2O/OR = 1/2. The rms surface roughness of all the films is lower than 1.1 nm, and increases with the increase of water content in sol. Higher water content leads to higher attenuation of film. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
角质层是果实抵御外界环境胁迫的一个屏障,既能调节果实自身的生理活动,也能增加对病原菌入侵的抵抗力,在果实贮藏保鲜中具有重要的作用。本文利用傅里叶变换红外光谱检测(Fourier-transform-infrared-spectroscopy)法,重点研究了不同贮藏条件下果实角质层和果肉细胞壁成分变化,及对果实品质和贮藏性的影响,为进一步阐明角质层在果实贮藏保鲜中的作用提供依据。研究内容包括:(1)壶瓶枣果实在冷藏和气调下软化率、品质、角质层和果肉细胞壁成分变化;(2)即时冷藏和延迟冷藏下,桃果实好果率、品质、角质层和果肉细胞壁成分变化;(3)采前喷施氯化钙或油菜素内酯对甜樱桃单果重、品质、果肉细胞壁结构以及耐贮性的影响。 试验结果表明:(1)与冷藏(-1±1 ºC)相比,气调贮藏(10% O2 + 0% CO2, -1±1 ºC)能够显著降低壶瓶枣软化率,更好地保持果实的硬度、可溶性固形物(SSC)和可滴定酸(TA)含量以及较高含量的果肉细胞壁物质和较低含量的角质层物质。(2)与延迟冷藏(25 ºC,48 h后转入0 ºC)相比,即时冷藏使“八月脆”桃果实能保持较高的果实硬度和好果率,显著减慢TA含量下降,能保持较高含量的果肉细胞壁物质和角质层物质,但对SSC和Vc含量没有显著的影响。(3)与对照相比,采前喷施CaCl2(1%,m/v)能够增加“红灯”(6.94%)的单果重,对甜樱桃果实的品质指标(硬度、SSC、TA)和细胞壁结构没有明显的影响。(4)与对照相比,采前喷施0.15 mg•L-1油菜素内酯能增加“红灯”(3.68%)和“大紫”(8.61%)的单果重,降低“红灯”果实的自然腐烂率,并不影响果实的品质指标(硬度、SSC、TA)。 这些研究结果说明:(1)与冷藏(-1±1 ºC)相比,气调贮藏(10% O2 + 0% CO2, -1±1 ºC)更利于壶瓶枣果实贮藏保鲜;(2)与延迟冷藏(25 ºC,48 h后转入0 ºC)相比,即时冷藏(0 ºC)更利于“八月脆”桃果实贮藏保鲜;(3)气调贮藏和即时冷藏通过调节果实角质层和细胞壁代谢等途径发挥作用。气调贮藏会降低壶瓶枣果实角质层物质含量,增强其透气性,减少壶瓶枣酒软发生;但即时冷藏会延缓“八月脆”桃果实角质层降解,维持角质层物质较高的含量以及结构完整性,以充分发挥角质层的保护作用,减缓果实的软化进程,维持果实硬度和品质;(4)采前适当浓度的钙或油菜素内酯处理对增加甜樱桃单果重,降低自然腐烂率有一定的作用,但在不同品种中的作用效果有差异。
Resumo:
Ordered arrays of FePt nanoparticles were prepared using a diblock polymer micellar method combined with plasma treatment. Rutherford backscattering spectroscopy analyses reveal that the molar ratios of Fe to Pt in metal-salt-loaded micelles deviate from those when metal precursors are added, and that the plasma treatment processes have little influence upon the compositions of the resulting FePt nanoparticles. The results from Fourier transform infrared spectroscopy show that the maximum loadings of FeCl3 and H2PtCl6 inside poly( styrene)-poly(4-vinylpyridine) micelles are different. The composition deviation of FePt nanoparticles is attributed to the fact that one FeCl3 molecule coordinates with a single 4-vinylpyridine (4VP) unit, while two neighboring and uncomplexed 4VP units are required for one H2PtCl6 molecule. Additionally, we demonstrate that the center-to-center distances of the neighboring FePt nanoparticles can also be tuned by varying the drawing velocity.
Resumo:
We study the structural defects in the SiOx film prepared by electron cyclotron resonance plasma chemical vapour deposition and annealing recovery evolution. The photoluminescence property is observed in the as-deposited and annealed samples. [-SiO3](2-) defects are the luminescence centres of the ultraviolet photoluminescence (PL) from the Fourier transform infrared spectroscopy and PL measurements. [-SiO3](2-) is observed by positron annihilation spectroscopy, and this defect can make the S parameters increase. After 1000 degrees C annealing, [-SiO3](2-) defects still exist in the films.
Resumo:
The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.
Resumo:
A set of a-SiOx:H (0.52 < x < 1.58) films are fabricated by plasma-enhanced-chemical-vapor-deposition (PECVD) method at the substrate temperature of 250degreesC. The microstructure and local bonding configurations of the films are investigated in detail using micro-Raman scattering, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). It is found that the films are structural inhomogeneous, with five phases of Si, Si2O:H, SiO:H, Si2O3:H and SiO2 that coexist. The phase of Si is composed of nonhydrogenated amorphous silicon (a-Si) clusters that are spatially isolated. The average size of the clusters decreases with the increasing oxygen concentration x in the films. The results indicate that the structure of the present films can be described by a multi-shell model, which suggests that a-Si cluster is surrounded in turn by the subshells Of Si2O:H, SiO:H, Si2O3:H, and SiO2.
Resumo:
A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.
Resumo:
The TiO2-supported zeolite with core/shell heterostructure was fabricated by coating aluminosilicate zeolite (ASZ) on the TiO2 inoculating seed via in situ hydrothermal synthesis. The catalysts were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), nitrogen physisorption (BET), and Fourier transform infrared spectroscopy (FT-IR). The surface acidity of the catalysts was measured by pyridine-TPD method. The catalytic performance of the catalysts for ethanol dehydration to ethylene was also investigated. The results show that the TiO2-supported zeolite composite catalyst with core/shell heterostructure exhibits prominent conversion efficiency for ethanol dehydration to ethylene.
Resumo:
In this study, silicon nanocrystals embedded in SiO2 matrix were formed by conventional plasma enhanced chemical vapor deposition (PECVD) followed by high temperature annealing. The formation of silicon nanocrystals (nc-Si), their optical and micro-structural properties were studied using various experimental techniques, including Fourier transform infrared spectroscopy, micro-Raman spectra, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy. Very strong red light emission from silicon nanocrystals at room temperature (RT) was observed. It was found that there is a strong correlation between the PL intensity and the substrate temperature, the oxygen content and the annealing temperature. When the substrate temperature decreases from 250degreesC to RT, the PL intensity increases by two orders of magnitude.
Resumo:
SiOx films with oxygen concentrations ranging 13-46 at.% were deposited by plasma enhanced chemical vapor deposition (PECVD) technique using: pure SiH4 and N2O mixture. Erbium was then implanted at an energy of 500 KeV with dose of 2x10(15) ions/cm(2). The samples were subsequently annealed in N-2 for 20 sec at temperatures of (300-950 degrees C). Room temperature (RT) photo-luminescence (PL) data were collected by Fourier Transform Infrared Spectroscopy (FTIS) with an argon laser at a wavelength of 514.5 nm and an output power from 5 to 2500 mw. The intense room-temperature luminescence was observed around 1.54 mu m. The luminescence intensity increases by 2 orders of magnitude as compared with that of Er-doped Czochralski (CZ) Si. We found that the Er3+ luminescence depends strongly on the SiOx microstructure. Our experiment also showed that the silicon grain radius decreased with increasing oxygen content and finally formed micro-crystalline silicon or nano-crystalline silicon. As a result, these silicon small particles could facilitate the energy transfer to Er3+ and thus enhanced the photoluminescence intensity.
Resumo:
A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.