39 resultados para Ensemble résolvant
Resumo:
We study the photoluminescence (PL) properties of InAs/GaAs self-assembled quantum dots (QDs) by varying excitation power and temperature. Excitation power-dependent PL shows that there exists bimodal size distribution in the QD ensemble. Thermal carrier redistribution between the two branches of dots is observed and investigated in terms of the temperature dependence of their relative PL intensity. Based on a model in which carrier transfer between dots is facilitated by the wetting layer, the experimental results are well explained. (C) 2001 American Institute of Physics.
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Systematic study of molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs, In-AlAs/AlGaAs/GaAs, and InAs/InAlAs/InP quantum dots (QDs) is demonstrated. By adjusting growth conditions, surprising alignment, preferential elongation, and pronounced sequential coalescence of dots under the specific condition are realized. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 1 W is achieved from vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). An RT CW output power of 0.53 W ensures at least 3 000 h lasing (only drops 0.83 db). This is one of the best results ever reported.
Resumo:
The excitation transfer processes in vertically self organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12 nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.
Resumo:
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature.
Resumo:
The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.
Resumo:
该文对4轮MISTY和3轮双重MISTY两种结构进行了优化。在保持其安全性不变的情况下,把4轮MISTY结构中第1轮的伪随机置换,用一个XOR-泛置换代替,第2,第3轮采用相同的伪随机置换,3轮结构中第1轮的伪随机置换用XOR-泛置换代替,其它轮相同。伪随机置换的数量分别由原来的4个变为2个,3个变为1个,从而缩短了运行时间,节省了密钥量,大大降低了结构的实现成本。
Resumo:
采用非抛物性能带模型,对6H-SiC高场电子输运特性进行了多粒子蒙特卡罗(Ensemble Monte Carlo)研究.研究表明:温度为296 K时,电子横向漂移速度在电场为2.0×104 V/cm处偏离线性区,5.O×10~5V/cm处达到饱和.由EMC方法得到的电子横向饱和漂移速度为1.95×10~7cm/s,纵向为6.0×10~6cm/s,各向异性较为显著.当电场小于1.0×10~6 V/cm时,碰撞电离效应对高场电子漂移速度影响较小.另一方面,高场下电子平均能量的各向异性非常明显.电场大于2.O×10~5V/cm时,极化光学声子散射对电子横向能量驰豫时间影响较大.当电场一定时,c轴方向的电子碰撞电离率随着温度的上升而增大.对非稳态高场输运特性的分析表明:阶跃电场强度为1.0×10~6 V/cm时,电子横向瞬态速度峰值接近3.O×10~7cm/s,反应时间仅为百分之几皮秒量级.
Resumo:
The dissociation of methane hydrate in the presence of ethylene glycol (11.45 mol.L-1) at 277.0 K was studied using canonical ensemble (NVT) molecular dynamics simulations. Results show that hydrate dissociation starts from the surface layer of the solid hydrate and then gradually expands to the internal layer. Thus, the solid structure gradually shrinks until it disappears. A distortion of the hydrate lattice structure occurs first and then the hydrate evolves from a fractured frame to a fractional fragment. Finally, water molecules in the hydrate construction exist in the liquid state. The inner dissociating layer is, additionally, coated by a liquid film formed from outer dissociated water molecules outside. This film inhibits the mass transfer performance of the inner molecules during the hydrate dissociation process.
Resumo:
Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.
Resumo:
The particle transfer molecular dynamics is used to study the phase equilibria of linear and branched chain molecules. The scaling of the critical temperature versus chain length is obtained and the critical densities are found to decrease with increasing chain length, which are in agreement with the results of experiment and theory. The phase diagrams of the linear and the branched chain molecules nearly overlap with each other. Moreover, the radial distribution functions of linear and branched chain molecules in gas phase are very similar, but in the liquid phase, they are different for different kinds of chains.