71 resultados para Advanced materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

InAs quantum wires (QWRs) have been fabricated on the InP(001), which has been evidenced by TEM and polarized photoluminescence measurements (PPL). The monlayer-splitting peaks (MSPs) in the PL spectrum of InAs QWRs can be clearly observed at low temperature measurements. Supposing a peak-shift of MSP identical to that of bulk material, we obtain the thermal activation energies of up to 5 MSPs. The smaller thermal activation energies for the MSPs of higher energy lead to the fast red-shift of PL peak as a whole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we investigated the Raman scattering and photoluminescence of Zn1-xMnxO nanowires synthesized by the vapor phase growth. The changes of E-2(High) and A(1(LO)) phonon frequency in Raman spectra indicate that the tensile stress increases while the free carrier concentration decreases with the increase of manganese. The Raman spectra exited by the different lasers exhibit the quantum confinement effect of Zn1-xMnxO nanowires. The photoluminescence spectra reveal that the near band emission is affected by the content of manganese obviously. The values Of I-UV/G decrease distinctly with the manganese increase also demonstrate that more stress introduced with the more substitution of Mn for Zn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pt/AlGaN/AlN/GaN Schottky diodes have been fabricated and characterized for H-2 sensing. Platinum (Pt) with a thickness of 20nm was evaporated on the sample to form the Schottky contact. The ohmic contact, formed by evaporated Ti/Al/Ni/Au metals, was subsequently annealed by a rapid thermal treatment at 860 degrees C for 30 s in N-2 ambience. Both the forward and reverse current of the device increased greatly when exposed to H-2 gas. The sensor's responses under different hydrogen concentrations from 500ppm to 10% H-2 in N-2 at 300K were investigated. A shift of 0.45V at 297K is obtained at a fixed forward current for switching from N-2 to 10% H-2 in N-2. Time response of the sensor at a fixed bias of 0.5 V was also measured. The turn-on response of the device was rapid, while the recovery of the sensor at N-2 atmosphere was rather slow. But it recovered quickly when the device was exposed to the air. The decrease in the barrier height of the diode was calculated to be about 160meV upon introduction of 10% H-2 into the ambient. The sensitivity of the sensor is also calculated. Some thermodynamics analyses have been done according to the Langmuir isotherm equation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The above work was supported by the national Basic Research Program of China (2006cb604904, 2006cb604908), the hi-tech R & D program of China (2006aa03z0408, 2006aa03z0404), the scientific research Fund of Central South University of Forstry and Technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The principle of step-scan Fourier transform infrared (FTIR) spectroscopy is introduced. Double modulation step-scan FTIR technique is used to obtain the quantum cascade laser's stacked emission spectra in the time domain. Optical property and thermal accumulation of devices due to large drive current are analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The variation of the structure, morphology and the electrical properties of thin amorphous silicon films caused by Rapid Thermal Annealing is studied. The films annealed at 1200degreesC for 2 minutes change their structure to polycrystalline and as a result their resistivity decreases by 4 orders of magnitude. Due to the small thickness of the as deposited amorphous silicon the obtained poly-Si is strongly irregular and has many discontinuities in its texture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.