31 resultados para Óleos láuricos
Resumo:
A novel microwave packaging technique for 10Gb/s electro-absorption modulator integrated with distributed feedback laser (EML) is presented. The packaging parasitics and intrinsic parasitics are both well considered, and the packaging circuit was synthetically designed to compensate for the intrinsic parasitic of the chip. A butterfly-packaged EMI module has been successfully developed to prove that. The small-signal modulation bandwidth of the butterfly-packaged module is about 10 GHz. Optical fiber transmission experiments have shown that the module can be used for 10Gb/s optical transmission system. After transmission through 40km,. the power penalty is less than 1 dBm at a bit-error-rate of 10-12.
Resumo:
SOI (Silicon on Insulator) based photonic devices, including stimulated emission from Si diode, RCE (Resonant Cavity Enhanced) photodiode with quantum structure, MOS (Metal Oxide Semiconductor) optical modulator with high frequency, SOI optical matrix switch and wavelength tunable filter are reviewed in the paper. The emphasis will be played on our recent results of SOI-based thermo-optic waveguide matrix switch with low insertion loss and fast response. A folding re-arrangeable non-blocking 4x4 matrix switch with total internal reflection (TIR) mirrors and a first blocking 16 x 16 matrix were fabricated on SOI wafer. The extinction ratio and the crosstalk are better. The insertion loss and the polarization dependent loss (PDL) at 1.55 mu m increase slightly with longer device length and more bend and intersecting waveguides. The insertion losses are expected to decrease 2-3 dB when anti-reflection films are added in the ends of the devices. The rise and fall times of the devices are 2.1 mu s and 2.3 mu s, respectively.
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is introduced in this paper. The intrinsic small-signal response can be directly extracted from the measured transmission coefficients of laser diode by the method. However the chip temperature may change with the injection bias current due to thermal effects, which causes inaccurate intrinsic response by our method. Therefore, how to determine the chip temperature and keep the laser chip adiabatic is very critical when extracting the intrinsic response. To tackle these problems, the dependence of the lasing wavelength of the laser diode on the chip temperature is investigated, and an applicable measurement setup which keeps the chip temperature stable is presented. The scattering parameters of laser diode are measured on diabatic and adiabatic conditions, and the extracted intrinsic responses for both conditions are compared. It is found that the adiabatic intrinsic responses are evidently superior to those without thermal consideration. The analysis indicates that inclusion of thermal effects is necessary to acquire accurate intrinsic response.
Resumo:
In AlGaInP/GaInP multi-quantum well (MQW) lasers, the electron leakage current is a much more serious problem than that in laser diodes with longer wavelength. To further improve the output performance, the leakage current should be analyzed. In this letter, the temperature dependence of electrical derivative characteristics in AlGaInP/GaInP multi-quantum well lasers was measured, and the potential barrier for electron leakage was obtained. With the help of secondary ion mass spectroscopy (SIMS) measurement, theoretical analysis of the potential barrier was presented and compared with the measurement result. The influence of p-cladding doping level and doping profile on the potential barrier was discussed, and this can be helpful in metalorganic chemical vapor deposition (MOCVD) growth.
Resumo:
Wide transmission dips are observed in the through spectra in microring and racetrack channel drop filters by two-dimensional finite-difference time-domain (FDTD) simulation. The transmission spectra, which reflect the coupling efficiency, are also calculated from the FDTD output as the pulse just travels one circle inside the resonator. The results indicate that the dips are caused by the dispersion of the coupling coefficient between the input waveguide and the resonator. In addition, a near-zero channel drop on resonance and a large channel drop off resonance are observed due to the near zero coupling coefficient and a large coupling coefficient, respectively. If the width of the input waveguide is different from that of the ring resonator, the oscillation of the coupling coefficient can be greatly suppressed.
Resumo:
This paper presents measurement methods for determining the reflection coefficients and frequency responses of semiconductor laser diodes, photodiodes, and EA modulator chips. A novel method for determining the intrinsic frequency responses of laser diodes is also proposed, and applications of the developed measurement methods are discussed. We demonstrate the compensation of bonding wire on the capacitances of both the submount and the laser diode, and present a method for estimating the potential modulation bandwidth of TO packaging technique. Initial study on removing the effects of test fixture on large-signal performances of optoelectronic devices at high data rate is also given.
Resumo:
Compositional distribution of the quantum well and barrier after quantum well intermixing for GaInP/AlGaInP system was theoretically analyzed on the basis of atom diffusion law. With the compositional distribution result, the valence subband structure of the intermixed quantum well was calculated on the basis of 6x6 Luttinger-Kohn Hamiltonian, including spin-orbit splitting effects. TO get more accurate results in the calculation, a full 6-band problem was solved without axial approximation, which had been widely used in the Luttinger-Kohn model to simplify the computational efforts, since there was a strong warping in the GaInP valence band. At last, the bandgap energy of the intermixed quantum well was obtained and the calculation result is of much importance in the analysis of quantum well intermixing experiments.
Resumo:
Usually in the calculation of valence subband structure for III-V direct bandgap material, axial approximation had been used in the Luttinger-Kohn model to simplify the computational efforts. In this letter, the valence subband structure for the GaInP/AlGaInP strained and lattice-matched quantum wells was calculated without axial approximation, on the basis of 6x6 Luttinger-Kohn Hamiltonian including strain and spin-orbit splitting effects. The numerical simulation results were presented with help of the finite-difference methods. The calculation results with/without axial approximation were compared and the effect of axial approximation on the valence subband structure was discussed in detail. The results indicated that there was a strong warping in the GaInP valence band, and axial approximation can lead to an error when k was not equal to zero, especially for compressively strained and lattice-matched GaInP/AlGaInP quantum wells.
Resumo:
Modes in equilateral triangle resonator (ETR) are analyzed and classified according to the irreducible representations of the point group C-3v., Both the analytical method based on the far field emission and the numerical method by FDTD technique are used to calculate the quality factors (Q-factors) of the doubly degenerate states in ETR. Results obtained from the two methods are in reasonable agreement. Considering the different symmetry properties of the doubly degenerate eigenstates, we also discuss the ETR joined with an output waveguide at one of the vertices by FDTD technique and the Pade approximation. The variation of Q-factors versus width of output waveguide is analyzed. The numerical results show that doubly degenerate eigenstates of TM0.36 and TM0.38 whose wavelengths are around 1.5 mu m in the resonator with side-length of 5 mu m have the Q-factors larger than 1000 when the width of the output waveguide is smaller than 0.4 mu m. When the width of the output waveguide is set to 0.3 mu m, the symmetrical states that are more efficiently coupled to output waveguide have Q-factors about 8000, which are over 3 times larger than those of asymmetric state.
Resumo:
Resumo:
High quality crack free GaN epilayers were grown on Si(111) substrates. Low temperature AlN interlayer grown under low V/III ratio was used to effectively eliminate the formation of micro-cracks. It is found that tensile stress in the GaN epilayer decreases as the N/Al ratio decreases used for AlN interlayer growth. The high optical and structural qualities of the GaN/Si samples were characterized by RBS, PL and XRD measurements. The RT-PL FWHM of the band edge emission is only 39.5meV The XRD FWHM of the GaN/Si sample is 8.2arcmin, which is among the best values ever reported.
Resumo:
The design and fabrication of 1550 nm semiconductor optical amplifiers (SOAs) and the characteristics of the fabricated SOA are reported. A novel gain measurement technique based on the integrations of the product of emission spectrum and a phase function over one mode interval is proposed for Fabry-Perot semiconductor lasers.
Resumo:
MMI (multimode interference) coupler, modulator and switch based on SOI (silicon- on-insulator) have been become more and more attractive in optical systems since they show important performances. SiO2 thin cladding layers (<1.0mum) can be used in SOI waveguide due to the large index step between Si and SiO2, making them compatible with the VLSI technology. The design and fabrication of multimode interference (MMI) optical coupler, modulator and switche in SOI technology are presented in the paper. The results demonstrated that the modulator has an extinction ratio of -11.0dB and excess loss of -2.5dB, while the optical switch has a crosstalk of -12.5dB and responding time of less than 20 mus.
Resumo:
Resumo: