322 resultados para gallium nitride
Resumo:
The investigation of deep levels of argon-implanted LEC-grown semi-insulating GaAs with implantation dosages ranging from 1 x 10(11) to 1 x 10(15) cm-2 has been performed. Using a photoinduced transient-current spectroscopy (PITCS) it was demonstrated that, for implantation dosages below 1 X 10(13) cm-2, a negative peak or negative transient current (NTC) was observed in the temperature range from 330 to 350 K. The magnitude of this negative peak increased with dosage up to a level of 1 X 10(12) cm-2, beyond which it decreased with dosage. The dosage dependence of the EL3 peak height and the resistance of the specimen have also been investigated. It was observed that the variation of the EL3 peak height with dosage was similar to the variation of the magnitude of the negative peak, that is the EL3 peak height likewise increased with dosage up to 1 X 10(12) cm-2, and then decreased. The resistance of the original high-resistivity specimen dropped abruptly when the dosage reached 1 X 10(12) cm-2. This critical dosage (1 X 10(12) cm-2) was found to be a threshold for the generation of a highly disordered state.
Resumo:
The basic idea of a defect model of photoconversion by an oxygen impurity in semi-insulating GaAs, proposed in an earlier paper, is described in a systematic way. All experiments related to this defect, including high-resolution spectroscopic measurements, piezospectroscopic study, and recent measurements on electronic energy levels, are explained on the basis of this defect model. The predictions of the model are in good agreement with the experiments. A special negative-U mechanism in this defect is discussed in detail with an emphasis on the stability of the charge states. The theoretical basis of using a self-consistent bond-orbital model in the calculation is also given.
Resumo:
We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.
Resumo:
Longitudinal zone boundary X phonon frequencies have been calculated by a first principles pseudopotential method for III-V zincblende semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs and InSb. The phonon frequencies have been evaluated from total energy calculations in the frozen phonon approximation. The calculated phonon frequencies agree very well with the experimental values.
Resumo:
Undoped and Zinc-doped GaN films have been grown using TMGa, DEZn and Ammonia by MOVPE. The GaN blue-green LEDs of m-i-n structure have been fabricated. They can be operated at forward bias less than 5 volts. The EL peak wavelengths was from 455 nm to 504 nm.
Resumo:
The effect of molecular nitrogen exposure on the InP(100) surface modified by the alkali metal K overlayer is investigated by core-level photoemission spectroscopy using synchrotron radiation. The alkali metal covered surface exhibits reasonable nitrogen uptake at room temperature, and results in the formation of a P3N5 nitride complex. Flash annealing at 400 degrees C greatly enhanced the formation of this kind of nitride complex. Above 500 degrees C, the nitride complex dissolved completely. (C) 1997 American Vacuum Society.
Resumo:
The structural properties of GaAs grown at low temperatures by molecular beam epitaxy (LTMBE GaAs) were studied. The excess arsenic atoms in LTMBE GaAs exist in the form of arsenic interstitial couples (i,e, two ns atoms share the one host site), and cause an increase in the lattice parameter of LTMBE GaAs. Annealing at above 300 degrees C, the arsenic interstitial couples decomposed, and As precipitates formed, resulting in a decrease in the lattice parameter.
Resumo:
Recent infrared spectroscpic observations of local vibrational mode absorptions have revealed a number of photosensitive centers in semi-insulating GaAs. They include (OVAs) center which has three modes at 730 cm(-1) (A), 715 cm(-1) (B), and 714 cm(-1) (C), respectively, a suggested NH center related to a line at 983 cm(-1) (X(1)), and centers related to hydrogen, such as (H-O) or (H-N) bonds, corresponding to a group of peaks in the region of 2900-3500 cm(-1). The photosensitivity of various local vibration centers was observed to have similar time dependence under near-infrared illumination and was suggested to be due to their charge-state interconversion. Mainly described in this work is the effect of the 1.25-eV illumination. It is confirmed that this photoinduced kinetic process results from both electron capture and hole capture, which are closely related to the photoionization behavior and metastability of the EL2 center.
Resumo:
After illumination with 1-1.3 eV photons during cooling-down, metastable PH modes are observed by IR absorption at 5 K in semi-insulating InP:Fe. They correlate with the photo-injection of holes, but not with a change of the charge state of the K-related centres present at equilibrium. They are explained by a change of the bonding of H, induced by hole trapping, from IR-inactive centres to PH-containing centres, stable only below 80 K. One metastable centre has well-defined geometrical parameters and the other one could be located in a region near from the interface with (Fe,P) precipitates.
Resumo:
Quantum well disordering of GaAs/AlGaAs multiple quantum well(MQW) has been accomplished with only plasma enhanced chemical vapor deposited (PECVD) SiN cap layer growth. The amount of blue shift increases with SiN growing time. This result has been explained by the vacancy indiffusion during PECVD SiN growth. Rapid thermal annealing (RTA) of the sample after SiN cap layer growth at 850 degrees C for 35 s caused a larger amount of blue shift than those obtained without RTA. By considering the model of Al diffusion from AlGaAs barrier into GaAs QWs together with the result from photoluminescence (PL) measurement, Al diffusion coefficients were calculated. The Al diffusion coefficient due to PECVD SiN was estimated at about 3 x10(-17) cm(2)/s. It was possible to extract the effect of RTA on the QW disordering, which showed that the amount of the blue shift and the Al diffusion coefficient due only to RTA increases with SiN cap layer thickness as reported by Chi et al.(10))
Resumo:
High quality GaN is grown on GaN substrate with stripe pattern by metalorganic chemical vapor deposition by means of epitaxial lateral overgrowth. AFM,wet chemical etching, and TEM experiments show that with a two-step ELOG procedure, the propagation of defects under the mask is blocked, and the coherently grown GaN above the window also experiences a drastic reduction in defect density. In addition, a grain boundary is formed at the coalescence boundary of neighboring growth fronts. The extremely low density of threading dislocations within wing regions makes ELOG GaN a potential template for the fabrication of nitride-based lasers with improved performance.
Resumo:
A kind of novel broad-band superluminescent diodes (SLDs) using graded tensile-strained bulk InGaAs is developed. The graded tensile-strained bulk InGaAs is obtained by changing only group-III trimethyl-gallium source flow during low-pressure metal organic vapor-phase epitaxy. At the injection current of 200 mA, the fabricated SLDs with such structure demonstrate full-width at half-maximum spectral width of 106 nm and the output light power of 13.6 mW, respectively.
Resumo:
In order to improve crystal quality for growth of quaternary InAlGaN, a series of InAlGaN films were grown on GaN buffer layer under different growth temperatures and carrier gases by low-pressure metal-organic vapor phase epitaxy. Energy dispersive spectroscopy (EDS) was employed to measure the chemical composition of the quaternary, high resolution X-ray diffraction (HRXRD) and photoluminescence (PL) technique were used to characterize structural and optical properties of the epilayers, respectively. The PL spectra of InAlGaN show with and without the broad-deep level emission when only N2 and a N2+H2 mixture were used as carrier gas, respectively. At pressure of 1.01×104 Pa and with mixed gases of nitrogen and hydrogen as carrier gas, different alloy compositions of the films were obtained by changing the growth temperature while keeping the fluxes of precursors of indium (In), aluminum (Al), gallium (Ga) and nitrogen (N2) constant. A combination of HRXRD and PL measurements enable us to explore the relative optimum growth parameters-growth temperature between 850℃ and 870℃,using mixed gas of N2+H2 as carrier gas.
Resumo:
Two quaternary InAlGaN films were grown by metal-organic chemical-vapor deposition (MOCVD) on sapphire (0001) substrates with and without high-temperature GaN interlayer, respectively. The structural and optical properties of the quaternary films were investigated by high-resolution X-ray diffraction (HRXRD), high-resolution electron microscopy (HREM), temperature-dependent photoluminescence (PL) spectroscopy and time-resolved photoluminescence (TRPL) spectroscopy. According to the HRXRD and PL results, it is demonstrated that two samples have the same crystal quality. The TRPL signals of both samples were fitted well as a stretched exponential decay from 14 K to 250 K, indicating significant disorder in the materials, which is attributed to recombination of excitons localized in disorder quantum nanostructures such as quantum dots or quantum disks originating from indium (In) clusters or In composition fluctuation. The cross-section HREM measurement further proves that there exist disorder quantum nanostructures in the quaternary. By investigating the temperature dependence of the dispersive exponent beta, it is shown that the stretched exponential decays of the two samples originate from different mechanisms. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We proposed a new method to suppress the crystallographic tilt in the lateral epitaxial overgrowth of GaN by using an oxide mask with a newly designed pattern. A rhombus mask with edges oriented in the direction of <10 - 10>(GaN) was used instead of the traditional stripe mask. The morphology evolution during the LEO GaN with the rhombus mask was investigated by SEM, and the crystallographic tilt in the LEO GaN was measured by DC-XRD. It is found that using the new rhombus mask can decrease the crystallographic tilt in the LEO GaN. In addition, this method makes the ELO GaN stripes easy to coalesce. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.