402 resultados para Penning traps, quantum electrodynamic, electron
Resumo:
InAlAs/InGaAs metamorphic high-electron-mobility transistor structures with different spacer layers on GaAs substrates are characterized by Raman measurements. The influence of In0.52Al0.48As spacer thickness on longitudinal optic phonon-plasmon coupling is investigated. It is found that the intensity of GaAs-like longitudinal optic phonon, which couples with collective intersubband transitions of two-dimensional electron gas, is strongly affected by the different subband energy spacings, subband electron concentrations, and wave function distributions, which are determined by different spacer thicknesses. (C) 2001 American Institute of Physics.
Resumo:
The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.
Resumo:
Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence from a GaN0.015As0.985/GaAs quantum well has been measured at 15 K under hydrostatic pressure up to 9 GPa. Both the emissions from the GaNAs well and GaAs barrier are observed. The GaNAs-related peak shows a much weaker pressure dependence compared to that of the GaAs band gap. A group of new peaks appear in the spectra when the pressure is beyond 2.5 GPa, which is attributed to the emissions from the N isoelectronic traps in GaAs. The pressure dependence of the GaNAs-related peaks was calculated using the two-level model with the measured pressure coefficients of the GaAs band gap and N level as fitting parameters. It is found that the calculated results deviate seriously from the experimental data. An increasing of the emission intensity and the linewidth of the GaNAs-related peaks was also observed and briefly discussed. (C) 2001 American Institute of Physics.
Resumo:
We have fabricated a new self-assembled quantum dot system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix. The low-temperature photoluminescence and atomic force microscopy measurements confirm the realization of the structure. In contrast to traditional InAs/Ga(Al)As quantum dots, the temperature dependence of the photoluminescence of the dots in such a structure exhibits an electronically decoupled feature due to a higher energy level of the wetting layer which keeps the dots more isolated from each other. (C) 2001 Published by Elsevier Science B.V.
Resumo:
We have studied the capacitance-voltage characteristics of an optically excited wide quantum well. Both self-consistent simulations and experimental results show the striking quantum contribution to the capacitance near zero bias which is ascribed to the swift decreasing of the overlap between the electron and hole wave functions in the well as the longitudinal field goes up. This quantum capacitance feature is regarded as an electrical manifestation of the quantum-confined Stark effect.
Resumo:
Self-assembled InAs quantum dots (QDs) have been grown by solid-source molecular beam epitaxy on a (311)B InP substrate. Transmission electron microscopy clearly shows that a high density of smaller InAs islands can be obtained by using such a high index substrate. After introducing a lattice-matched underlying In0.52Al0.24Ga0.24As layer, the InAs QDs are much more uniform in size and form two-dimensional well ordered arrays. The photoluminescence (PL) spectra also confirm that the InAs QDs grown on underlying In0.52Al0.24Ga0.24As have a better quality than those grown in the In0.52Al0.48As matrix. A simple calculation indicates that the redshift of the PL peak energy mainly results from InAs QDs on underlying In0.52Al0.24Ga0.24As of large size. (C) 2001 American Institute of Physics.
Resumo:
InAs and InxGa1-xAs (x = 0.2 and 0.5) self-organized quantum dots (QDs) were fabricated on GaAs(0 0 1) by molecular beam epitaxy (MBE) and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), acid photoluminescence polarization spectrum (PLP). Both structural and optical properties of InxGa1-xAs QD layer are apparently different from those of InAs QD layer. AFM shows that InxGa1-xAs QDs tend to be aligned along the [1 (1) over bar 0] direction, while InAs QDs are distributed randomly. TEM demonstrates that there is strain modulation along [1 1 0] in the InxGa1-xAs QD layers. PLP shows that In0.5Ga0.5As islands present optical anisotropy along [1 1 0] and [1 (1) over bar 0] due to structural and strain field anisotropy for the islands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In the framework of effective mass envelope function theory, the electronic states of the InAs/GaAs quantum ring are studied. Our model can be used to calculate the electronic states of quantum wells, quantum wires, and quantum dots. In calculations, the effects due to the different effective masses of electrons in rings and out rings are included. The energy levels of the electron are calculated in the different shapes of rings. The results indicate that the inner radius of rings sensitively changes the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. If decreasing the inner and outer radii simultaneously, one may increase the energy spacing between energy levels and keep the ground state energy level unchanged. If changing one of two radii (inner or outer radius), the ground state energy level and the energy spacing will change simultaneously. These results are useful for designing and fabricating the double colors detector by intraband and interband translations. The single electron states are useful for studying the electron correlations and the effects of magnetic fields in quantum rings. Our calculated results are consistent with the recent experimental data of nanoscopic semiconductor rings. (C) 2001 American Institute of Physics.
Resumo:
The circular polarization of excitonic luminescence is studied in CdTe/Cd1-xMgxTe quantum wells with excess electrons of low density in an external magnetic field. It is observed that the circular polarization of X and X- emissions has opposite signs and is influenced by the excess electron density. If the electron density is relatively high so that the emission intensity of the negatively charged excitons X- is much stronger than that of the neutral excitons X, a stronger circular polarization degree of both X and X- emissions is observed. We find that the circular polarization of both X- and X emissions is caused by the spin polarization of the excess electrons due to the electron-spin-dependent nature of the formation of X-. If the electron density is relatively low and the emission intensity of X- is comparable to that of X, the circular polarization degree of X and X- emissions is considerably smaller. This fact is interpreted as due to a depolarization of the excess electron spins, which is induced by the spin relaxation of X-.
Resumo:
Spin-density-functional theory is employed to calculate the conductance G through a quasi-one-dimensional quantum wire. In addition to the usual subband quantization plateaus at G=n(2e(2)/h), we find additional structures at (n+1/2)(2e(2)/h). The extra structures appear whether or not the electrons in the wire spin polarize. However, only the spin-polarized case reproduces the experimental temperature and magnetic field dependences.
Resumo:
The electron spin resonance (ESR) is optically detected by monitoring the microwave-induced changes in the circular polarization of the neutral exciton (X) and the negatively charged exciton (X-) emission in CdTe quantum wells with low density of excess electrons. We find that the circular polarization of the X and X- emission is a mapping of the spin polarization of excess electrons. By analyzing the ESR-induced decrease in the circular polarization degree of the X emission, we deduce the microwave-induced electron spin-flip time >0.1 mus, which is much longer than the recombination time of X and X-. This demonstrates that the optically detected ESR in type I quantum wells with low density of excess electrons does not obey the prerequisite for the conventional optically detected magnetic resonance. (C) 2001 American Institute of Physics.
Resumo:
Quantum cascade (QC) lasers based on strain-compensated InxGa(1-x)As/InyAl(1-y)As grown on InP substrate using molecular beam epitaxy is reported. The epitaxial quality is demonstrated by the abundant narrow satellite peaks of double-crystal X-ray diffraction and cross-section transmission electron microscopy of the QC laser wafer. Laser action in quasi-continuous wave operation is achieved at lambda approximate to 3.6-3.7 mum at room temperature (34 degreesC) for 20 mum x 1.6 mm devices, with peak output powers of similar to 10.6mW and threshold current density of 2.7kA/cm(2) at this temperature. (C) 2000 Published by Elsevier Science B.V.
Resumo:
We report on the realization of quantum cascade (QC) lasers based on strain-compensated InxGa(1-x)As/In(y)A((1-y))As grown on InP substrates using molecular beam epitaxy. X-ray diffraction and cross section transmission electron microscopy have been used to ascertain the quality of the QC laser materials. Quasi-continuous wave lasing at lambda approximate to 3.54-3.7 mum at room temperature was achieved. For a laser with 1.6 mm cavity length and 20 mum ridge-waveguide width,quasi-continuous wave lasing at 34 degreesC persists for more than 30 min, with a maximum power of 11.4 mW and threshold current density of 1.2 kA cm(-2), both record values for QC lasers of comparable wavelength.