280 resultados para quantum size effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The deposition of InxGa1-xAs (0.2 less than or equal to x less than or equal to 0.5) on (311)B GaAs surfaces using solid source molecular beam epitaxy (MBE) has been studied. Both AFM and photoluminescence emission showed that homogeneous quantum dots could be formed on (311)B GaAs surface when indium composition was around 0.4. Indium composition had a strong influence on the size uniformity and the lateral alignment of quantum dots. Compared with other surface orientation, (100) and (n11) A/B (n=1,2,3), photoluminescence measurement confirmed that (311)B surface is the most advantageous in fabricating uniform and dense quantum dots.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low-temperature photoluminescence studies have been performed on Si-doped and Be-doped self-organized InAs/GaAs quantum dot (QD) samples to investigate the effect of doping. When Si or Be is doped into the sample, a remarkable decrease in line-width is observed. We relate this phenomenon to a model that takes the Si or Be atoms as the nucleation centers for the formation of QDs. When Si or Be is doped, more small uniform quantum dots are formed. The result will be of significance for the application of self-organized InAs quantum dots in semiconductor devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

InGaAs/GaAs quantum dots (QDs) superlattice grown by molecular beam epitaxy (MBE) at different substrate temperatures for fabricating 8-12 mu m infrared photodetector were characterized by transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL). High-quality QDs superlattice can be achieved by higher growth temperature. Cross-sectional TEM shows the QDs in the successive layers are vertically aligned along growth direction. Interaction of partial vertically aligned columns leads to a perfect vertical ordering. With increasing number of bilayers, the average QDs size becomes larger in height and rapidly saturates at a certain value, while average lateral length nearly preserves initial size. This change leads to the formation of QDs homogeneous in size and of a particular shape. The observed self-organizations are attributed to the effect of strain distribution at QDs on the kinetic growth process. DCXRD measurement shows two sets of satellite peaks which corresponds to QDs superlattice and multi quantum wells formed by the wetting layers. Kinematical simulations of the wetting layers indicate that the formation of QDs is associated with a decrease of the effective indium content in the wetting layers. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In situ ultra high vacuum scanning probe microscopy (SPM) and low-temperature :photoluminescence (PL) studies have been performed on Si-doped self-organized InAs/GaAs quantum dots samples to investigate the Si doping effects. Remarkably, when Si is doped in the sample, according to the SPM images, more small dots are formed when compared with images from undoped samples. On the PL spectra, high-energy band tail which correspond to the small dots appear, with increasing doping concentration, the integral intensity of the high-energy band tail account for the whole peak increase too. We relate this phenomenon to a model that takes the Si atom as the nucleation center for QDs formation. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of growth interruption (GI) on the optical properties of InAs/GaAs quantum dots was investigated by cw and time-resolved photoluminescence (PL). It is found that this effect depends very much on the growth conditions, in particular, the growth rate. In the case of low growth rate, we have found that the GI may introduce either red-shift or blue-shift in PL with increase of the interruption lime, depending on the InAs thickness. The observed red shift in our 1.7 monolayer (ML) sample is attributed to the evolution of the InAs islands during the growth interruption. While the blue-shift in the 3 ML sample is suggested to be mainly caused by the strain effect. In addition, nearly zero shift was observed for the sample with thickness around 2.5 ML, (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoluminescence spectroscopy has been used to investigate self-assembled InAs islands in InAlAs grown on InP(0 0 1) by molecular beam epitaxy, in correlation with transmission electron microscopy. The nominal deposition of 3.6 monolayers of InAs at 470 degrees C achieves the onset stage of coherent island formation. In addition to one strong emission around 0.74 eV, the sample displaces several emission peaks at 0.87, 0.92. 0.98, and 1.04 eV. Fully developed islands that coexist with semi-finished disk islands account for the multipeak emission. These results provide strong evidence of size quantization effects in InAs islands. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of electric field on the electronic structure of a spherical quantum dot is studied in the framework of the effective-mass envelope-function theory. The dependence of the energy of electron states and hole states on the applied electric field and on the quantum dot size is investigated; the mixing of heavy holes and light holes is taken into account. The selection rule for the optical transition between the conduction band and valence band states is obtained. The exciton binding energies are calculated as functions of the quantum dot radius and the strength of the electric field. (C) 1998 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3143025]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs(100) substrates grown by metalorganic chemical vapor deposition (MOCVD) is studied. An abnormal trend of the evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then there is a sudden decrease at 535 degrees C. Photoluminescence (PL) studies show that QDs on vicinal substrates have a narrower PL line width, a longer emission wavelength and a larger PL intensity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nonradiative recombination effect on the photoluminescence (PL) decay dynamics in GaInNAs/GaAs quantum wells is studied by photoluminescence and time-resolved photoluminescence under various excitation intensities and temperatures. It is found that the PL decay dynamics strongly depends on the excitation intensity. In particular, under the moderate excitation levels the PL decay curves exhibit unusual non-exponential behavior and show a convex shape. By introducing a new concept of the effective concentration of nonradiative recombination centers into a rate equation, the observed results are well simulated. In the cw PL measurement, a rapid PL quenching is observed even at very low temperature and is of the excitation power dependence. These results further demonstrate that the non-radiative recombination process plays a very important role on the optical properties of GaInNAs/GaAs quantum wells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.