398 resultados para MACROPOROUS SILICON


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-frequency vibrational modes have been observed at liquid-helium temperature in silicon samples grown in a H-2 or D-2 atmosphere. The highest-frequency ones are due to the overtones and combination modes of SiH fundamentals. Others are CH modes due to (C,H) complexes, but the simultaneous presence of NH modes due to (N,H) complexes cannot be excluded. The present results seem to show also the existence of centers including both SiH and CH or NH bonds. One sharp mode at 4349 cm-l is related to a weak SiH fundamental at 2210 cm(-1). The related center is ascribed to a vacancy fully decorated with hydrogen with a nearest-neighbor C atom. [S0163-1829(99)00911-X].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton-implanted n-type Si wafers were annealed at 950 degrees C to achieve novel pn junctions. The novel pn junctions are explained by the combined use of four models. The background (e.g. oxygen impurity) of an Si wafer is suggested to play a key role in creating the novel pn junction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method, based on an infrared absorption and neutron irradiation technique, has been developed for the determination of interstitial oxygen in heavily boron-doped silicon. The new procedure utilizes fast neutron irradiated silicon wafer specimens. On fast neutron irradiation, the free carriers of high concentration in silicon can be trapped by the irradiated defects and the resistivity increased. The resulting calibration curve for the measurement of interstitial oxygen in boron-doped silicon has been established on the basis of the annealing behaviour of irradiated boron-doped CZ silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was determined that oxygen concentration in heavily Sb-doped silicon was about 40% lower than that in the lightly doped Czochralski grown silicon and decreased with increasing content of Sb by means of coincident elastic recoil detection analysis. Through thermodynamic calculation, the oxygen loss by evaporation from the free surface of melt is only due to the formation of SiO, and Sb2O3 evaporation can be neglected. The basic reason for oxygen concentration reduction in heavily Sb-doped CZSi was that oxygen solubility decreased when element Sb with larger radius doped degenerately into silicon crystal. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pronounced photoluminescence enhancement on chemically oxidized porous silicon was induced by a series of organic cyano compounds including 1,2-dicyanoethylene (CE), 1,3-dicyanobenzene (1,3-CB), 1,4-dicyanobenzene (1,4-CB), 1-cyanonaphthalene (1-CN), and 9-cyanoanthracene (9-CA). Photoluminescence enhancement effects were reversible for all compounds studies in this work. A dependence of photoluminescence enhancement on the steric effect and the electronic characteristics of these compounds and the structure of the porous silicon substrates were analyzed in terms of the photoluminescence enhancing factors. Surface chemical composition examined by Fourier transform infrared (FTIR) spectra demonstrated that the surface Si-H bonds were not changed and no new luminescent compounds were formed on porous silicon surface during adsorption of cyano compounds. A mechanism based on induced surface states acting as radiative recombination centers by cyano compounds adsorption was suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Void-like defects of octahedron structure having {111} facets were observed in annealed Czochralski silicon. The amorphous coverage of SiOx and SiCx on the inner surface of the defects was identified using transmission electron microscopy and electron energy-loss spectroscopy. It is suggested that these defects are a kind of amorphous precipitate origin. A mechanism for the generation of these defects and the previously reported solid amorphous precipitates is proposed. (C) 1998 American Institute of Physics. [S0003-6951(98)02842-3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing method has been used to crystallize amorphous silicon films prepared by PECVD. The solid-phase crystallization and dopant activation process can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/l-s 850 degrees C thermal pulse. A mean grain size more than 1000 Angstrom and a Hall mobility of 24.9 cm(2)/V s are obtained in the crystallized films. The results indicate that this annealing method possesses the potential for fabricating large-area and good-quality polycrystalline silicon films on low-cost glass substrate. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure, hydrogen bonding configurations and hydrogen content of high quality and stable hydrogenated amorphous silicon (a-Si:H) films prepared by a simple ''uninterrupted growth/annealing" plasma enhanced chemical vapor deposition technique have been investigated by Raman scattering and infrared absorption spectroscopy. The high stability a-Si:H films contain small amounts of a microcrystalline phase and not less hydrogen (10-16 at. %), particularly, the clustered phase hydrogen, Besides, the hydrogen distribution is very inhomogeneous. Some of these results are substantially distinct from those of conventional device-quality n-Si:H film or stable cr-Si:H films prepared by the other techniques examined to date. The stability of n-Si:H films appears to have no direct correlation with the hydrogen content or the clustered phase hydrogen concentration. The ideal n-Si:H network with high stability and low defect density is perhaps not homogeneous. (C) 1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discovers some shortcomings in the algorithm for the incorporation of Si into GaAs in the GaAs VPE process. These faults arise from neglecting a link, the compatibility relationship, in chemical thermodynamics. The meaning of said relationship is as follows: In an equilibrium complex system, each species can only contribute one and the same quantity (its equilibrium quantity) to the different equilibria of the various reactions involving it; yet even under this restriction, every equilibrium constant is satisfied, and all the reaction equilibria coexist compatibly in the system. Only by adding the relationship can the equilibrium theory for the complex system be complete. This paper also tells its position in chemical thermodynamics. Such a compatibility concept directly leads to an equivalence principle: In a complex system, a certain species can usually be simultaneously formed by many chemical reactions; when the system has reached equilibrium under fixed environmental conditions, the equilibrium quantity of said species calculated according to each chemical equation of these reactions will be equal and the various reaction approaches will be equivalent, provided that for all the reactants and all the other products of these reactions their equilibrium quantities in the system are respectively taken as corresponding knowns for the calculations, which is extremely useful for seeking a functional relation among the species' equilibrium quantities in a system (Si contamination is one of the examples). Under the guidance of those arguments, the various schools' algorithms for the Si contamination can be uniformized and simplified, and the contamination quantity relation between Si and O, two very important impurities, is found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional transmission electron microscopy and energy-filtering were used to study the dislocations and nanocavities in proton-implanted [001] silicon. A two-dimensional network of dislocations and nanocavities was found after a two-step annealing, while only isolated cavities were present in single-step annealed Si. In addition, two-step annealing increased materially the size and density of the nanocavities. The Burgers vector of the dislocations was mainly the 1/2[110] type. The gettering of oxygen at the nanocavities was demonstrated. (C) 1998 American Institute of Physics. [S0003-6951(98)00620-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si-rich SiO2 films were deposited by plasma-enhanced chemical vapor deposition on the silicon substrates, and then implanted with 1 x 10(15) cm(-2) 400 keV Er ions. After annealing at 800 degrees C for 5 min the samples show room temperature luminescence around 1.54 mu m, characteristic of intra-4f emission from Er3+, upon excitation using an Ar ion laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible photoluminescence (PL) and Raman spectra of Ge clusters embedded in porous silicon (PS) have been studied. The as-prepared sample shows redshifted and enhanced room temperature PL relative to reference PS. This result can be explained by the quantum confinement effect on excitons in Ge clusters and tunnel of excitons from Si units of the PS skeleton to Ge clusters. One year storage in dry air results in a pronounced decrease in PL intensity but blue-shifted in contrast to reference PS. This phenomenon correlates to the size decrease of macerated Ce clusters and occurrence of "quantum depletion" in Ge clusters. Consequently, only excitons in Si units contribute to PL. (C) 1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence of porous silicon can be modified sensitively by surface adsorption of different kinds of molecules. A quite different effects of 9-cyanoanthracene and anthracene adsorption on the photoluminescence of porous silicon were observed. The adsorption of 9-cyanoanthracene induced the photoluminescence enhancement, while anthracene adsorption resulted in photoluminescent quenching. An explanation of the interaction of adsorbates with surface defect sites of porous silicon was suggested and discussed. (C) 1998 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic states and optical transition properties of silicon quantum-well layers embedded by SiO2 layers are studied by the empirical pseudopotential homojunction model. The energy bands, wave functions, and the optical transition matrix elements are obtained for layers of thickness from 1 to 6 nm, and three oriented directions (001), (110), and (111). It is found that for Si layers in the (001) direction the energy gap is pseudodirect, for these in the (111) direction the energy gap is indirect, while for those in the (110) direction the energy gap is pseudodirect or indirect for a thickness smaller or larger than 3 nm, respectively. The optical transition matrix elements are smaller than that of diner transition, and increase with decreasing layer thickness. When the thickness of a layer is smaller than 2 nm, the Si QW layers have larger transition matrix elements. It is caused by mixing of bulk X states with the Gamma(1) state. The calculated results are compared with experimental results.