301 resultados para Diffusive random lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers emitting at 4.7 mu m. A rectangular photonic crystal lattice perpendicular to the cleaved facet was defined using holographic lithography. The anticrossing of the index- and Bragg-guided dispersions of rectangular lattice forms the band-edge mode with extended mode volume and reduced group velocity. Utilizing this coupling mechanism, single mode operation with a near-diffractive-limited divergence angle of 12 degrees is obtained for 33 mu m wide devices in a temperature range of 85-300 K. The reduced threshold current densities and improved heat dissipation management contribute to the realization of devices' room temperature operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the molecular beam epitaxy growth of 1.3 mu m InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T-0. The active region of the lasers consists of five-layer InAs QDs with p-type modulation doping. Devices with a stripe width of 4 mu m and a cavity length of 1200 mu m are fabricated and tested in the pulsed regime under different temperatures. It is found that T-0 of the QD lasers is as high as 532K in the temperature range from 10 degrees C to 60 degrees C. In addition, the aging test for the lasers under continuous wave operation at 100 degrees C for 72 h shows almost no degradation, indicating the high crystal quality of the devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tapered distributed feedback quantum cascade laser emitting at lambda similar to 8.1 mu m is reported. Utilising a tapered waveguide structure with a surface metal grating, the device exhibited singlemode operation over the temperature range of 100 to 214 K, with sidemode suppression ratio > 20 dB and a nearly diffraction limited far-field beam divergence angle of 5.4 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study on the facet damage profile of quantum cascade lasers (QCLs). Conspicuous cascade half-loop damage strips on front facet are observed when QCLs catastrophically failed. Due to the large difference on thermal conductivities between active region and the substrate, dominant heat is compulsively driven to the substrate. Abundant heat accumulation and dissipation on substrate build large temperature gradient and thermal lattice mismatch. Thermal-induced stress due to sequential mismatch leads to the occurrence of the multistep damages on front facet. Good agreement is achieved between the observed locations of damaged strips and the calculated results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadband grating-coupled external cavity laser, based on InAs/GaAs quantum dots, is achieved. The device has a wavelength tuning range from 1141.6 nm to 1251.7 nm under a low continuous-wave injection current density (458 A/cm(2)). The tunable bandwidth covers consecutively the light emissions from both the ground state and the 1st excited state of quantum dots. The effects of cavity length and antireflection facet coating on device performance are studied. It is shown that antireflection facet coating expands the tuning bandwidth up to similar to 150 nm, accompanied by an evident increase in threshold current density, which is attributed to the reduced interaction between the light field and the quantum dots in the active region of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 degrees C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T-0) of the laser diodes is also improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical study of the self-heating effect on the two-state lasing behaviors in 1.3-mu m self-assembled InAs-GaAs quantum dot (QD) lasers is presented. Lasing spectra under different injected currents, light-current (L-I) curves measured in continuous and pulsed regimes as well as a rate-equation model considering the current heating have been employed to analyze the ground-state (GS) and excited-state (ES) lasing processes. We show that the self-heating causes the quenching of the GS lasing and the ES lasing by the increased carrier escape rate and the reduced maximum modal gain of GS and ES.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations of freak wave generation are studied in random oceanic sea states described by JONSWAP spectrum. The evolution of initial random wave trains is numerically carried out within the framework of the modified four-order nonlinear Schroedinger equation (mNLSE), and some involved influence factors are also discussed. Results show that if the sideband instability is satisfied, a random wave train may evolve into a freak wave train, and simultaneously the setting of the Phillips parameter and enhancement coefficient of JONSWAP spectrum and initial random phases is very important for the formation of freak waves. The way to increase the generation efficiency of freak waves though changing the involved parameters is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review paper summarises briefly some important achievements of our recent research on the synthesis and novel applications of nanostructure ZnO such as honeycomb shaped 3-D (dimension) nano random-walls. A chemical reaction/vapour transportation deposition technique was employed to fabricate this structure on ZnO/SiO2/Si substrate without any catalyst and additive in a simple tube furnace to aim the low-cost and high qualified samples. Random laser action with strong coherent feedback at the wavelength between 375 nm and 395 nm has been firstly observed under 355 nm optical excitation with threshold pumping intensity of 0.38 MW/cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental demonstrations of the use of a self-imaging resonator in the phase locking of two fibre lasers are presented. The output power of the phase-locked fibre laser array exceeded 2 W Successful attempts of phase locking show that the fibre laser array is not only capable of producing high Output Power but also large on-axis intensity by this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analytic solutions of coupled-mode equations of four-wave mixings (FWMs) are achieved by means of the undepleted approximation and the perturbation method. The self-stability mechanism of the FWM processes is theoretically proved and is applicable to design a new kind of triple-wavelength erbium-doped fiber lasers. The proposed fiber lasers with excellent stability and uniformity are demonstrated by using a flat-near-zero-dispersion high-nonlinear photonic-crystal-fiber. The significant excellence is analyzed in theory and is proved in experiment. Our fiber lasers can stably lase three waves with the power ripple of less than 0.4 dB. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel dual-wavelength (DW) sampled fiber Bragg grating (SFBG) is proposed and demonstrated for the first time to the author's best knowledge. This kind of SFBG can realize a DW operation with uniform reflection peaks rather than multiple nonuniform peaks shown in conventional SFBGs. Based on the designed SFBG, we have proposed a novel L-band DW erbium-doped fiber laser, which has such a unique merit that the spacing of the two wavelengths keeps unchanged during tuning laser.