188 resultados para CRITICAL LAYER THICKNESS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present the growth of InAs rings by droplet epitaxy. A complete process from the rings formation to their density saturation has been demonstrated: A morphological evolution with the varying of the indium deposition amount has been, clearly observed. Our results indicate that there, is a critical deposition amount (similar to 1.1 ML) for the indium to form InAs dots before droplets form; there is also a critical deposition amount (similar to 1.4 ML) to form InAs ring, but it is caused by the formation of droplets as the deposition amount increases. The density of the rings saturates when the deposition amount exceeds similar to 3.3 ML; because the adsorbed indium atoms block sites for further adsorption and the following supplied In only contributes to the size increase of In droplets. Still, as the In deposition amount increases, we can find coupled quantum rings. Moreover, the wetting layer properties of these structures are studied by reflectance difference spectroscopy, which shows a complicated evolution with the In amount. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When AlGaN is grown on GaN template, crack networks invariably generate when the thickness of the AlGaN layers over GaN exceeds the critical value. We used thin high temperature deposited AlN layer (HT-AlN) as the interlayer between GaN template and AlGaN epilayer which was very effective in eliminating the cracks in AlGaN epilayer. AlGaN layers with high Al mole fractions were also grown. Characterization showed that the crystalline quality of AlGaN epilayer was fairly good even when the At mole fraction was high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidizing thick porous silicon layer into silicon dioxide is a timesaving and low-cost process for producing thick silicon dioxide layer used in silicon-based optical waveguide devices. The solution of H2O2 is proposed to post-treat thick porous silicon (PS) films. The prepared PS layer as the cathode is applied about 10 mA/cm(2) current in mixture of ethanol, HF, and H2O2 solutions, in order to improve the stability and the smoothness of the surface. With the low-temperature dry-O-2 pre-oxidizations and high-temperature wet O-2 oxidizations process, a high-quality SiO2 30 mu m thickness layer that fit for the optical waveguide device was prepared. The SEM images show significant improved smoothness on the surface of oxidized PS thick films, the SiO2 film has a stable and uniformity reflex index that measured by the prism coupler, the uniformity of the reflex index in different place of the wafer is about 0.0003.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental investigations were performed to show the application of x-ray crystal truncation rod scattering combined with x-ray reflectivity in the measurements of surface roughness and near-surface damage of mechanochemically polished wafers. By fitting the measured crystal truncation rod curves it has been shown that polished wafers are divided into three parts -irregular steps on the surface, a damaged thin layer beneath the surface and a perfect bulk. The results show that the root mean square of the surface roughness of mechanochemically polished Fe-doped and/or S-doped InP wafers is one to two atom layers, and that the lateral correlation length of the surface roughness is about 3000-7500 Angstrom. The thickness of the damaged region is found to be about 1000 atom layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pb-doped BiSrCaCuO superconducting films were grown by the single source mixed evaporation technique. The microbridges of dimensions 50 mum x 40 mum were fabricated by standard photolithography technologies. Si films with a thickness of 2500 angstrom were deposited on the microbridge area surfaces of BiPbSrCaCuO superconducting films by rf-magnetron sputtering. A greatly lowered zero resistance temperature of the microbridge area of the BiPbSrCaCuO film after Si sputtering was found. A non-linear effect of the current-voltage (I-V) characteristics at 78 K was shown. The high-frequency capacitance-voltage (C-V) curve of this structure at 78 K was symmetrical with the maximum capacitance at V = 0, and the capacitance decreased with increasing applied bias voltage. Afl experimental results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InxGa1-xAs/InP (0.39 less than or equal to x less than or equal to 0.68) strained-layer quantum wells having 20 wells with thickness of 50 Angstrom in a P-i-N configuration were grown by gas source molecular beam epitaxy (GSMBE). High-resolution X-ray diffraction rocking curves show the presence of up to seven orders of sharp and intense satellite reflection, indicative of the structural perfection of the samples. Low-temperature photoluminescence and low-temperature absorption spectra were used to determine the exciton transition energies as a function of strain. Good agreement is achieved between exciton transition energies obtained experimentally at low temperature with those calculated using the deformation potential theory.