179 resultados para Bulk solids Separation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The defects and the lattice perfection of an AlN (0001) single crystal grown by the physical vapor transport (PVT) method were investigated by wet etching, X-ray diffraction (XRD), and infrared absorption, respectively. A regular hexagonal etch pit density (EPD) of about 4000 cm~(-2) is observed on the (0001) A1 surface of an AlN single crystal. The EPD exhibits a line array along the slip direction of the wurtzite structure, indicating a quite large thermal stress born by the crystal in the growth process. The XRD full width at half maximum (FWHM) of the single crystal is 35 arcsec, suggesting a good lattice perfection. Pronounced infrared absorption peaks are observed at wave numbers of 1790, 1850, 2000, and 3000 cm~(-1), respectively. These absorptions might relate to impurities O, C, Si and their complexes in AlN single crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus was diffused into CVT grown undoped ZnO bulk single crystals at 550 and 800℃ in a closed quartz tube. The P-diffused ZnO single crystals were characterized by the Hall effect, X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL), and Raman scattering. The P-diffused ZnO single crystals are n-type and have higher free electron concentration than undoped ZnO, especially for the sample diffused at 800℃. The PL measurement reveals defect related visible broad emissions in the range of 420-550nm in the P-diffused ZnO samples. The XPS result suggests that most of the P atoms substitute in the Zn site after they diffuse into the ZnO single crystal at 550℃ ,while the P atom seems to occupy the O site in the ZnO samples diffused at 800℃. A high concentration of shallow donor defect forms in the P-diffused ZnO,resulting in an apparent increase of free electron concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 150mA injection current, the full width at half maximum of the emission spectrum of the SLD is about 72nm, ranging from 1602 to 1674nm. The emission spectrum is smooth and flat. The ripple of the spectrum is less than 0.3dB at any wavelength from 1550 to 1700nm. An output power of 4.3mW is obtained at a 200mA injection current under continuous-wave operation at room temperature. This device is suitable for the applications of light sources for gas detectors and L-band optical fiber communications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kind of novel broad-band superluminescent diodes (SLDs) using graded tensile-strained bulk InGaAs is developed. The graded tensile-strained bulk InGaAs is obtained by changing only group-III trimethyl-gallium source flow during low-pressure metal organic vapor-phase epitaxy. At the injection current of 200 mA, the fabricated SLDs with such structure demonstrate full-width at half-maximum spectral width of 106 nm and the output light power of 13.6 mW, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiconductor optical amplifier gate based on tensile-strained quasi-bulk InGaAs is developed. At injection current of 80mA,a 3dB optical bandwidth of more than 85nm is achieved due to dominant band-filling effect.Moreover, the most important is that very low polarization dependence of gain (<0. 7dB),fiber-to-fiber lossless operation current (70~90mA) and a high extinction ratio (>50dB) are simultaneously obtained over this wide 3dB optical bandwidth (1520~1609nm) which nearly covers the spectral region of the whole C band (1525~1565nm)and the whole L band (1570~ 1610nm). The gating time is also improved by decreasing carrier lifetime. The wideband polarization-insensitive SOA-gate is promising for use in future dense wavelength division multiplexing (DWDM) communication systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fitting process is used to measure the cavity loss and the quasi-Fermi-level separation for Fabry- Perot semiconductor lasers. From the amplified spontaneous emission (ASE) spectrum, the gain spectrum and single-pass ASE obtained by the Cassidy method are applied in the fitting process. For a 1550nm quantum well InGaAsP ridge waveguide laser, the cavity loss of about ~24cm~(-1) is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the nanoscale periodic corrugation (NPC) structures on the dynamic fracture surface of a typical tough bulk metallic glass, submitted to high-velocity plate impact and scanned by atomic force microscopy (AFM). The detrended fluctuation analysis (DFA) of the recorded AFM profiles reveals that the valley landscapes of the NPC are nearly memoryless, characterized by Hurst parameter of 0.52 and exhibiting a self-similar fractal character with the dimension of about 1.48. Our findings confirm the existence of the “quasi-cleavage” fracture underpinned by tension transformation zones (TTZs) in metallic glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-point bending experiments were performed on as-cast and annealed samples of Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) bulk metallic glasses over a wide range of temperatures varying from room temperature (293 K) to liquid nitrogen temperature (77 K). The results demonstrated that the free volume decrease due to annealing and/or cryogenic temperature can reduce the propensity for the formation of multiple shear bands and hence deteriorate plastic deformation ability. We clearly observed a sharp ductile-to-brittle transition (DBT), across which microscopic fracture feature transfers from micro-scale vein patterns to nano-scale periodic corrugations. Macroscopically, the corresponding fracture mode changes from ductile shear fracture to brittle tensile fracture. The shear transformation zone volume, taking into account free volume, temperature and strain rate, is proposed to quantitatively characterize the DBT behavior in fracture of metallic glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new criterion for shear band formation in metallic glasses is proposed based on the shear plane criterion proposed by Packard and Schuh [1]. This modified shear plane (MSP) criterion suggests that a shear band is not initiated randomly throughout the entire material under stress but is initiated at the physical boundaries or defects and at locations where the highest normal stress modified maximum shear stress occurs. Moreover, the same as in the shear plan criterion, the shear stress all over the shear band should exceed the shear yield strength of the material. For a complete shear band to form, both requirements need to be fulfilled. The shear yield strength of the material is represented by the shear stress of the point at which the shear band stops. The new criterion agrees very well with experimental results in both the determination of the shear yield strength and the shear band path. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we review our recent advances in understanding the deformation behavior of a typical tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1) bulk metallic glass (BMG), as a model material, under various loading modes and strain rates, focusing particularly on the rate-dependence and formation mechanism of shear-banding. Dynamic and quasi-static mechanical experiments, including plate shear, shear punch and spherical indentation, and continuum as well as atomistic modeling on shear-banding are discussed. The results demonstrate that higher strain rate slows down the annihilation process of free volume, but promotes the free-volume coalescence, which is responsible for the rate-dependent shear banding. The physical origin of shear bands, that is the free volume softening underpinned by irreversible rearrangements of atoms, is unveiled. Finally, some concluding remarks are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For creep solids obeying the power law under tension proposed by Tabor, namely sigma = b(epsilon) over dot(m), it has been established through dimensional analysis that for self-similar indenters the load F versus indentation depth h can be expressed as F(t) = bh(2)(t)[(h) over dot(t)/h(t)](m)Pi(alpha) where the dimensionless factor Pi(alpha) depends on material parameters such as m and the indenter geometry. In this article, we show that by generalizing the Tabor power law to the general three dimensional case on the basis of isotropy, this factor can be calculated so that indentation test can be used to determine the material parameters b and m appearing in the original power law. Hence indentation test can replace tension test. This could be a distinct advantage for materials that come in the form of thin films, coatings or otherwise available only in small amounts. To facilitate application values of this constant are given in tabulated form for a range of material parameters. (C) 2010 Elsevier B.V. All rights reserved.