343 resultados para transient stimulated Brillouin scattering
Resumo:
We report on stacking fault (SF) detection in free-standing cubic-SiC epilayer by the Raman measurements. The epilayer with enhanced SFs is heteroepitaxially grown by low pressure chemical vapour deposition on a Si(100) substrate and is released in KOH solution by micromechanical manufacture, on which the Raman measurements are performed in a back scattering geometry. The TO line of the Raman spectra is considerably broadened and distorted. We discuss the influence of SFs on the intensity profiles of TO mode by comparing our experimental data with the simulated results based on the Raman bond polarizability (BP) model in the framework of linear-chain concept. Good agreement with respect to the linewidth and disorder-induced peak shift is found by assuming the mean distance of the SFs to be 11 angstrom in the BP model.
Resumo:
Raman scattering measurements have been carried out on ferromagnetic semiconductor Ga1-xMnxN prepared by Mn-ion implantation and post annealing. The Raman results obtained from the annealed and un-annealed Ga1-xMnxN demonstrate that crystalline quality has been improved in Ga1-xMnxN after annealing. Some new vibrational modes in addition to GaN-like modes are found in the Raman spectra measured from the Ga1-xMnxN where the GaN-like modes are found to be shifted in the higher frequency side than those measured from the bulk GaN. A new vibrational mode observed is assigned to MnN-like mode. Other new phonon modes observed are assigned to disorder-activated modes and Mn-related vibrational modes caused by Mn-ion implantation and post-annealing. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.
Resumo:
Deep level defects in as-grown and annealed SI-InP samples were investigated by thermally stimulated current spectroscopy. Correlations between electrical property, compensation ratio, thermal stability and deep defect concentration in SI-InP were revealed. An optimized crystal growth condition for high quality SI-InP was demonstrated based on the experimental results.
Resumo:
Deep level transient spectroscopy measurements were used to characterize the electrical properties of metal organic chemical vapor deposition grown undoped, Er-implanted and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. But four defect levels located at 0.300 eV, 0.188 eV, 0.600 eV and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280 eV, 0.190 eV, 0.610 eV and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30min. The origins of the deep defect levels are discussed. After annealing at 900 degrees C for 30min in a nitrogen flow, Er-related 1538nm luminescence peaks could be observed for the Er-implanted GaN sample. The energy-transfer and luminescence mechanism of the Er-implanted GaN film are described.
Resumo:
A GaAs/AlGaAs two-dimensional electron gas (2 DEG) structure with the high mobility of mu(2K) = 1.78 x 10(6) cm(2)/Vs has been studied by low-temperature Hall and Shubnikov de Hass (SdH) measurements. Quantum lifetimes related to all-angle scattering events reduced from 0.64 ps to 0.52 ps after illuminating by Dingle plots, and transport lifetimes related to large-angle scattering events increasing from 42.3 ps to 67.8 ps. These results show that small-angle scattering events become stronger. It is clear that small-angle scattering events can cause the variation of the widths of the quantum Hall plateaus.
Resumo:
A model for scattering due to interface roughness in finite quantum wells (QWs) is developed within the framework of the Boltzmann transport equation and a simple and explicit expression between mobility limited by interface roughness scattering and barrier height is obtained. The main advantage of our model is that it does not involve complicated wavefunction calculations, and thus it is convenient for predicting the mobility in thin finite QWs. It is found that the mobility limited by interface roughness is one order of amplitude higher than the results derived by assuming an infinite barrier, for finite barrier height QWs where x = 0.3. The mobility first decreases and then flattens out as the barrier confinement increases. The experimental results may be explained with monolayers of asperity height 1-2, and a correlation length of about 33 angstrom. The calculation results are in excellent agreement with the experimental data from AlxGa1-xAs/GaAs QWs.
Resumo:
Electron mobility limited by nitrogen vacancy scattering was taken into account to evaluate the quality of n-type GaN grown by metal-organic vapor phase epitaxy. Two assumptions were made for this potential for the nitrogen vacancy (1) it acts in a short range, and (2) does not diverge at the vacancy core. According to the above assumptions, a general expression to describe the scattering potential U(r) = - U-0 exp[- (r/beta)(n)], (n = 1, 2,...,infinity) was constructed, where beta is the potential well width. The mobilities for n = 1, 2, and infinity were calculated based on this equation, corresponding to the simple exponential, Gaussian and square well scattering potentials, respectively. In the limiting case of kbeta << 1 (where k is the wave vector), all of the mobilities calculated for n = 1, 2, and infinity showed a same result but different prefactor. Such difference was discussed in terms of the potential tail and was found that all of the calculated mobilities have T-1/2 temperature and beta(-6) well width dependences. A mobility taking account of a spatially complicate scattering potential was studied and the same temperature dependence was also found. A best fit between the calculated results and experimental data was obtained by taking account of the nitrogen vacancy scattering. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
An accurate and simple technique for measuring the input reflection coefficient and the frequency response of semiconductor laser diode chips is proposed and demonstrated. All the packaging parasitics could be obtained accurately using a calibrated probe, and the impedance of the intrinsic diode chip is deduced from the directly measured reflection coefficient. The directly measured impedance of a laser diode is affected strongly by the short bond wire. In the frequency response (S(2)1) measurements of semiconductor laser diode chips, the test fixture consists of a microwave probe, a submount, and a bond wire. The S-parameters of the probe could be determined using the short-open-match (SOM) method. Both the attenuation and the reflection of the test fixture have a strong influence on the directly measured frequency response, and in our proposed technique, the effect of test fixture is completely removed.
Resumo:
Within the Buttiker dephasing model, the backscattering in the dephasing process is eliminated by setting a proper boundary condition. Explicit expression is carried out for the effective total tunneling probability in the presence of multiple pure dephasing scatterers with partial coherence. The derived formula is illustrated analytically by various limiting cases, and numerically for its application in tunneling through multibarrier systems.
Resumo:
Transient photoconductivity and its light-induced change were investigated by using a Model 4400 boxcar averager and signal processor for lightly boron-doped a-Si : H films. The transient photoconductivities of the sample were measured at an annealed state and light-soaked states. The transient decay process of the photoconductivity can be fitted fairly well by a second-order exponential decay function, which indicates that the decay process is related with two different traps. It is noteworthy that the photoconductivity of the film increases after light-soaking. This may be due to the deactivity of the boron acceptor B-4(-), and thus some of the boron atoms can no longer act as acceptors and drives E-F to shifts upward. Consequently, the number of effective recombination centers may be reduced and so the photoconductivity increases.
Resumo:
Based on the Buttiker dephasing model, we propose an analytical scattering matrix approach to the long-range electron transfer phenomena. The present efficient scheme smoothly interpolates between the superexchange and the sequential hopping mechanisms. Various properties such as the drastic dephasing-assisted enhancement and turnover behaviors are demonstrated in good agreement with those obtained via the dynamical reduced density-matrix methods. These properties are further elucidated as results of the interplay among the dephasing strength, the tunneling parameter, and the bridge length of the electron transfer system. (C) 2001 American Institute of Physics.
Resumo:
Micro-Raman measurements were carried out to investigate the microstructure of amorphous silicon-nitrogen alloy (a-SiNx:H) samples with different N contents prepared by plasma enhanced chemical vapor deposition (PECVD). Resonant Raman effect was discovered by using 647.1- and 514.5-nm excitation wavelengths. The frequency of TO mode downshifts with increasing photon energy without varying its width, while LO mode expands to a great extent. The frequency-dependent shift of TO band is explained by heterogeneous structure model and quantum confinement model, and the width expansion of LO mode may be related to the overlapping of LA and LO bands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Optical transient current spectroscopy (OTCS) has been used to investigate defects in the low-temperature-grown GaAs after postgrowth rapid thermal annealing (RTA). Two samples A and B were grown at 220 degreesC and 360 degreesC on (001) GaAs substrates, respectively. After growth, samples were subjected to 30s RTA in the range of 500-800 degreesC. Before annealing, X-ray diffraction measurements show that the concentrations of the excess arsenic for samples A and B are 2.5 x 10(19) and 1 x 10(19) cm(-3), respectively. It is found that there are strong negative decay signals in the optical transient current (OTC) for the annealed sample A. Due to the influence of OTC strong negative decay signals, it is impossible to identify deep levels clearly from OTCS. For a comparison, three deep levels can be identified for sample B before annealing. They are two shallower deep levels and the so-called As-Ga antisite defect. At the annealing temperature of 600 degreesC, there are still three deep levels. However, their structures are different from those in the as-grown sample. OTC strong negative decay signals are also observed for the annealed sample B. It is argued that OTC negative decay signals are related to arsenic clusters. (C) 2000 Elsevier Science B.V. All rights reserved.