255 resultados para metalorganic chemical deposition


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs(100) substrates grown by metalorganic chemical vapor deposition (MOCVD) is studied. An abnormal trend of the evolution on temperature is observed. With the increase of the growth temperature, while the density of the large dots decreases continually, that of the small dots first grows larger when temperature was below 520 degrees C, and then there is a sudden decrease at 535 degrees C. Photoluminescence (PL) studies show that QDs on vicinal substrates have a narrower PL line width, a longer emission wavelength and a larger PL intensity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Al0.3Ga0.7N/AlN/GaN HEMT structures with significantly high mobility have been grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. At room temperature (RT) a Hall mobility of 2104 cm(2)/Vs and a two-dimensional electron gas (2DEG) density of 1.1x10(13) cm(-2) are achieved, corresponding to a sheet resistance of 277.8 Omega/sq. The elimination of V-shaped defects were observed on Al0.3Ga0.7N/AlN/GaN HEMT structures and correlated with the increase of 2DEG mobility. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Improved electrical properties of AlxGa1-xN/GaN high electron mobility transistor (HEMT) structures grown by metalorganic chemical vapor deposition (MOCVD) were achieved through increasing the Al mole fraction in the AlGaN barrier layers. An average sheet resistance of 326.6 Omega/sq and a good resistance uniformity of 98% were obtained for a 2-inch Al0.38Ga0 62N/GaN HEMT structure. The surface morphology of AlxGa1-xN/GaN HEMT structures strongly correlates with the Al content. More defects were formed with increasing Al content due to the increase of tensile strain, which limits further reduction of the sheet resistance. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In AlGaInP/GaInP multi-quantum well (MQW) lasers, the electron leakage current is a much more serious problem than that in laser diodes with longer wavelength. To further improve the output performance, the leakage current should be analyzed. In this letter, the temperature dependence of electrical derivative characteristics in AlGaInP/GaInP multi-quantum well lasers was measured, and the potential barrier for electron leakage was obtained. With the help of secondary ion mass spectroscopy (SIMS) measurement, theoretical analysis of the potential barrier was presented and compared with the measurement result. The influence of p-cladding doping level and doping profile on the potential barrier was discussed, and this can be helpful in metalorganic chemical vapor deposition (MOCVD) growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Undoped high resistivity (HR) GaN epilayers were grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). Thermally stimulated current (TSC) and resistivity measurements have been carried out to investigate deep level traps. Deep levels with activation energies of 1.06eV and 0.85eV were measured in sample 1. Gaussian fitting of TSC spectra showed five deep levels in different samples. (c) 2006 WILEY VCH Vertag GmbH & Co. KGaA, Weinheim

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High resistivity unintentionally doped GaN films were grown on (0001) sapphire substrates by metalorganic chemical vapor deposition. The surface morphology of the layer was measured by both atomic force microscopy and scanning electron microscopy. The results show that the films have mirror-like surface morphology with root mean square of 0.3 nm. The full width at half maximum of double crystal X-ray diffraction rocking curve for (0002) GaN is about 5.22 arc-min, indicative of high crystal quality. The resistivity of the GaN epilayers at room temperature and at 250 degrees C was measured to be approximate 10(9) and 10(6) Omega(.)cm respectively, by variable temperature Hall measurement. Deep level traps in the GaN epilayers were investigated by thermally stimulated current and resistivity measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Unintentionally doped GaN epilayers are grown by the metalorganic chemical vapor deposition (MOCVD). Photovoltaic (PV) spectroscopy shows that there appears an abnormal photoabsorption in some undoped GaN films with high resistance. The peak energy of the absorption spectrum is smaller than the intrinsic energy band gap of GaN. This phenomenon may be related to exciton absorption. Then metal-semiconductor-metal (MSM) Schottky photodetectors are fabricated on these high resistance epilayers. The photo spectrum responses are different when the light individually irradiates each of the two electrodes with the photodetector which are differently biased. When the excitation light irradiates around the reverse biased Schottky junction, the responsivity is almost one order of magnitude larger than that around the forward biased junction. Furthermore, when the excitation light irradiates the reverse biased Schottky junction, the peak energy of the spectrum has a prominent red-shift compared with the peak energy of the spectrum measured with the excitation light irradiating the forward biased Schottky junction. The shift value is about 28 meV, and it is found to be insensitive to temperature. According to the analyses of the distribution of the electric field within the MSM device and the different dependences of the response on the electric field intensity between the free carriers and excitons, a reliable explanation for the different response among various areas is proposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

GaAs epilayers grown on Si by metalorganic chemical vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were characterized by deep-level transient spectroscopy (DLTS). Six electron traps with activation energies of 0.79, 0.67, 0.61, 0.55, 0.53 and 0.32 eV below the conduction band were determined by fitting the experimental spectra. Two of the levels, C (0.61 eV) and F (0.32 eV), were first detected in GaAs epilayers on Si and identified as the metastable defects M3 and M4, respectively. In order to improve the quality of GaAs/Si epilayers, another GaAs layer was grown on the GaAs/Si epilayers grown using MOCVD. The deep levels in this regrown GaAs epilayer were also studied using DLTS. Only the EL2 level was found in the regrown GaAs epilayers. These results show that the quality of the GaAs epilayer was greatly improved by applying this growth process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a novel technique for growing high-quality GaAs on Si substrate. The process involves deposition of a thin amorphous Si film prior to the conventional two-step growth. The GaAs layers grown on Si by this technique using metalorganic chemical vapor deposition exhibit a better surface morphology and higher crystallinity as compared to the samples gown by conventional two-step method. The full width at half maximum (FWHM) of the x-ray (004) rocking curve for 2.2 mu m thick GaAs/Si epilayer grown by using this new method is 160arcsec. The FWHM of the photoluminescence spectrum main peak for this sample is 2.1 meV. These are among the best results reported so far. In addition, the mechanism of this new growth method was studied using high-resolution transmission electron microscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ZnO nanorod arrays with different morphologies were grown by metalorganic chemical vapor deposition (MOCVD). The diameters of nanorods range from 150 nm to 20 nm through changing the carrier gas flux during the growth process. Measurements such as scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and photoluminescence (pL) spectrum were employed to analyze the differences of these nanorods. It was found that when both carrier gas flux of Zn and O reactant are 1 SLM, we can obtain the best vertically aligned and uniform nanorods. Furthermore, the PL spectrum reveals a blueshift of UV emission peak, which may be assigned to the increase of surface effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mg-doped GaN layers prepared by metalorganic chemical vapor deposition were annealed at temperatures between 550 and 950℃. Room temperature (RT) Hall and photoluminescence (PL) spectroscopy measurements were performed on the as-grown and annealed samples. After annealing at 850℃, a high hole concentration of 8 × 10~(17) cm~(-3) and a resistivity of 0. 8lΩ·cm are obtained. Two dominant defect-related PL emission bands in GaN.. Mg are investigated; the blue band is centered at 2. 8eV (BL) and the ultraviolet emission band is around 3.27eV (UVL). The relative intensity of BL to UVL increases after annealing at 550℃, but decreases when theannealing temperature is raised from 650 to 850℃, and finally increases sharply when the annealing temperature is raised to 950C. The hole concentration increases with increased Mg doping, and decreases for higher Mg doping concentrations. These results indicate that the difficulties in achieving high hole concentration of 10~(18)cm~(-3) appear to be related not only to hydrogen passivation, but also to self-compensation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The layer structure of GaInP/AlGaInP quantum well laser diodes (LDs) was grown on GaAs substrate using low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. In order to improve the catastrophic optical damage (COD) level of devices, a nonabsorbing window (NAW), which was based on Zn diffusion-induced quantum well intermixing, was fabricated near the both ends of the cavities. Zn diffusions were respectively carried out at 480, 500, 520, 540, and 580 Celsius degree for 20 minutes. The largest energy blue shift of 189.1 meV was observed in the window regions at 580 Celsius degree. When the blue shift was 24.7 meV at 480 Celsius degree, the COD power for the window LD was 86.7% higher than the conventional LD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The persistent photoconductivity(PPC) phenomena in n-type GaN Films grown by metalorganic chemical vapor deposition(MOCVD) have been studied. After using some testing and analysis methods, such as the double crystal X-ray diffraction(DCXRD), the photolumineseence(PL) spectra, etc, it is found that the issue which influences PPC in n-type GaN is not relative to the dislocations and yellow band (YB), and is caused by the doping level of Si most likely.