567 resultados para coupled quantum dots
Resumo:
A systematic investigation is made on the influence of the longitudinal and transverse period distributions of quantum dots on the elastic strain field. The results showed that the effects of the longitudinal period and transverse period on the strain field are just opposite along the direction of center-axis of the quantum dots, and under proper conditions, both effects can be eliminated. The results demonstrate that in calculating the effect of the strain field on the electronic structure, one must take into account the quantum dots period distribution, and it is inadequate to use the isolated quantum dot model in simulating the strain field.
Resumo:
The influence of GaAS(1 0 0)2 degrees substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
We report the photocurrent response in a double barrier structure with quantum dots-quantum well inserted in central well. When this quantum dots-quantum well hybrid heterostructure is biased beyond + 1 or -I V, the photocurrent response manifests itself as a steplike enhancement, increasing linearly with the light intensity. Most probably, at proper bias condition, the pulling down of the X minimum of GaAs at the outgoing interface of the emitter barrier by the photovoltaic effect in GaAs QW will initiate the r,-X-X tunneling at much lower bias as compared with that in the dark. That gives rise to the observed photocurrent response. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The optical manipulation of electron spins is of great benefit to solid-state quantum information processing. In this letter, we provide a comparative study on the ultrafast optical manipulation of single electron spin in the doped and undoped quantum dots. The study indicates that the experimental breakthrough can be preliminarily made in the undoped quantum dots, because of the relatively less demand.
Resumo:
The effects of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots (QDs) grown by molecular-beam epitaxy ( MBE) were investigated. The emission wavelength of 1317 nm was obtained by embedding InAs QDs in InGAs/GgAs quantum well. The temperature-dependent and timed-resolved photoluminescence (TDPL and TRPL) were used to study the dynamic characteristics of carriers. InGaAs cap layer may improve the quality of quantum dots for the strain relaxation around QDs, which results in a stronger PL intensity and an increase of PL peak lifetime up to 170 K. We found that InGaAs buffer layer may reduce the PL peak lifetime of InAs QDs, which is due to the buffer layer accelerating the carrier migration. The results also show that InGaAs cap layer can increase the temperature point when, the thermal reemission and nonradiative recombination contribute significantly to the carrier dynamics.
Resumo:
InAs quantum dots (QDs) were grown on In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (0 0 1) substrates. Atomic force microscopy and transmission electron microscopy study have indicated that In0.15Ga0.85As ridges and InAs QDs formed at the inclined upside of interface misfit dislocations (MDs). By testifying the MDs are mixed 60 degrees dislocations and calculating the surface stress over them when they are 12-180 nm below the surface, we found the QDs prefer nucleating on the side with tensile stress of the MDs and this explained why the ordering of QDs is weak when the InGaAs layer is relatively thick. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We grow InGaAs quantum dot (QD) at low growth rate with 70 times insertion of growth interruption in MBE system. It is found that because of the extreme growth condition, QDs exhibit a thick wetting layer, large QD height value and special surface morphology which is attributed to the enhanced adatom surface diffusion and In-segregation effect. Temperature dependence of photoluminescence measurement from surface QD shows that this kind of QD has good thermal stability which is explained in terms of the presence of surface oxide. The special distribution of QD may also play a role in this thermal character. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure and electron g factors of HgTe quantum dots are investigated, in the framework of the eight-band effective-mass approximation. It is found that the electron states of quantum spheres have aspheric properties due to the interaction between the conduction band and valence band. The highest hole states are S (l = 0) states, when the radius is smaller than 9.4 nm. the same as the lowest electron states. Thus strong luminescence from H-Te quantum dots with radius smaller than 9.4 nm has been observed (Rogach et al 2001 Phys. Statits Solidi b 224 153). The bandgap of H-Te quantum spheres is calculated and compared with earlier experimental results (Harrison et al 2000 Pure Appl. Chem. 72 295). Due to the quantum confinement effect, the bandgap of the small HgTe quantum spheres is positive. The electron g factors of HgTe quantum spheres decrease with increasing radius and are nearly 2 when the radius is very small. The electron g factors of HgTe quantum ellipsoids are also investigated. We found that as some of the three dimensions increase, the electron g factors decrease. The more the dimensions increase, the more the g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension.
Resumo:
In this paper, we perform systematic calculations of the stress and strain distributions in InAs/GaAs truncated pyramidal quantum dots (QDs) with different wetting layer (WL) thickness, using the finite element method (FEM). The stresses and strains are concentrated at the boundaries of the WL and QDs, are reduced gradually from the boundaries to the interior, and tend to a uniform state for the positions away from the boundaries. The maximal strain energy density occurs at the vicinity of the interface between the WL and the substrate. The stresses, strains and released strain energy are reduced gradually with increasing WL thickness. The above results show that a critical WL thickness may exist, and the stress and strain distributions can make the growth of QDs a growth of strained three-dimensional island when the WL thickness is above the critical value, and FEM can be applied to investigate such nanosystems, QDs, and the relevant results are supported by the experiments.
Resumo:
Molecular beam epitaxy was employed to manufacture self-assembled InAs/GaAs quantum dot Schottky resonant tunneling diodes. By virtue of a thin AlAs insertion barrier, the thermal current was effectively reduced and electron resonant tunneling through quantum dots under both forward and reverse biased conditions was observed at relatively high temperature of 77 K. The ground states of quantum dots were found to be at similar to 0.19 eV below the conduction band of GaAs matrix. The theoretical computations were in conformity with experimental data. (c) 2006 The Electrochemical Society.
Resumo:
Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL). It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.
Resumo:
Self-assembly Ge quantum dots (QD) on Si and Si/Ge mutli-quantum-wells (MQW) are grown by MBE. The island size and island density was investigated by atomics force microscopy. Ten-layer and twenty-layer MQW were selected for photodiode device fabrication. In photoluminescence (PL), a broad peak around 1.55-mu m wavelength was observed with higher peak intensity for the 10-layer MQW which had less defects than the 20-layer sample. Resonant cavity enhanced (RCE) photodiodes were fabricated by bonding on a SOI wafer. Selected responsivity at 1.55 mu m was successfully demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
By using reflectance difference spectroscopy we have studied the in-plane optical anisotropy of GaAs surfaces covered by ultrathin InAs layers. The strain evolution of the GaAs surface with the InAs deposition thickness can be obtained. It is found that the optical anisotropy and the surface tensile strain attain maximum values at the onset of the formation of InAs quantum dots (QDs) and then decrease rapidly as more InAs QDs are formed with the increase of InAs deposition. The origin of the optical anisotropy has been discussed.
Resumo:
The growth of InAs quantum dots on vicinal GaAs (100) Substrates was systematically studied using low-pressure metalorganic chemical vapor deposition (MOCVD). The dots showed a clear bimodal size distribution on vicinal substrates. The way of evolution of this bimodal size distribution was studied as a function of growth temperature, InAs layer thickness and InAs deposition rate. The optical properties of dots grown on vicinal substrates were also studied by photoluminescence (PL). It was found that, compared with dots on exact substrates, dots on vicinal substrates had better optical properties such as a narrower PL line width, a longer emission wavelength, and a larger PL intensity. (c) 2006 Elsevier B.V. All rights reserved.