155 resultados para Pulse width modulated voltage source inverters
Resumo:
Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.
Resumo:
Low-temperature-grown GaAs (LT-GaAs) of 1-um thickness was grown at 250 degrees C on semi-insulating GaAs (001) substrate using EPI GEN-II solid-source MBE system. The sample was then in situ annealed for 10 min at 600 degrees C under As-rich condition. THz emitters were fabricated on this LTGaAs with three different photoconductive dipole antenna gaps of 1-mm, 3-mm, and 5-mm, respectively. The spectral bandwidth of 2.75 THz was obtaind with time domain spectroscopy. It is found that THz emission efficiency is increased with decreasing antenna gap. Two carrier lifetimes, 0.469 ps and 3.759 ps, were obtained with time-resolved transient reflection-type pump-probe spectroscopy.
Resumo:
We demonstrate 10 Gb/s directly-modulated 1.3 mu m InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 mu m and a cavity length of 600 mu m are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50 degrees C are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.
Resumo:
We present a novel X-ray frame camera with variable exposure time that is based on double-gated micro-channel plates (MCP). Two MCPs are connected so that their channels form a Chevron-MCP structure, and four parallel micro-strip lines (MSLs) are deposited on each surface of the Chevron-MCP. The MSLs on opposing surfaces of the Chevron-MCP are oriented normal to each other and subjected to high voltage. The MSLs on the input and output surfaces are fed high voltage pulses to form a gating action. In forming two-dimensional images, modifying the width of the gating pulse serves to set exposure times (ranging from ps to ms) and modifying the delay between each gating pulse serves to set capture times. This prototype provides a new tool for high-speed X-ray imaging, and this paper presents both simulations and experimental results obtained with the camera.
Resumo:
Using gas-source molecular beam epitaxy, we have obtained high-quality GaInP and (AlGa)InP epilayers lattice-matched to (100) GaAs substrates. All grown layers exhibited mirror-like surfaces. For a 1.7 mum thick Ga0.5In0.5P film, the Hall electron mobility was 3400 and 30,000 CM2/V. s at 300 and 77 K, respectively. The luminescence wavelength of (AlxGa1-x)InP samples ranged from 680 nm (for GaInP) to 590 nm (for AlInP) at room temperature, and from 644 to 513 nm at 77 K. The multiple quantum well (MQW) structure with well width of 40 angstrom showed strong luminescence intensity with wavelength of 647 nm (300 K) or 622 nm (80 K). The satellite peaks can be detected in double-crystal X-ray (DCXR) diffraction measurements of the MQW samples, which indicates the perfect structural periodicity.
Resumo:
The transient charge response Q(t) of a two-dimensional electron gas (2DEG) in GaAs/AlxGa1-xAs heterostructures to a small pulse of the gate voltage, applied between the top gate and source electrodes in a Corbino structure, was employed to directly measure the effective diffusion constant of a 2DEG in the quantum Hall regime. The measured diffusion constant D showed a drastic change as the magnetic field was swept through the integer fillings of the Landau levels.
Resumo:
A voltage-controlled tunable two-color infrared detector with photovoltaic (PV) and photoconductive (PC) dual-mode operation at 3-5 mu m and 8-14 mu m using GaAs/AlAs/AlGaAs double barrier quantum wells (DBQWs) and bound-to-continuum GaAs/AlGaAs quantum wells is demonstrated. The photoresponse peak of the photovoltaic GaAs/AlAs/GaAlAs DBQWs is at 5.3 mu m, and that of the photoconductive GaAs/GaAlAs quantum wells is at 9.0 mu m. When the two-color detector is under a zero bias, the spectral response at 5.3 mu m is close to saturate and the peak detectivity at 80 K can reach 1.0X10(11) cmHz(1/2)/W, while the spectral photoresponsivity at 9.0 mu m is absolutely zero completely. When the external voltage of the two-color detector is changed to 2.0 V, the spectral photoresponsivity at 5.3 mu m becomes zero while the spectral photoresponsivity at 9.0 mu m increases comparable to that at 5.3 mu m under zero bias, and the peak detectivity (9.0 mu m) at 80 K can reach 1.5X10(10) cmHz(1/2)/W. Strictly speaking, this is a real bias-controlled tunable two-color infrared photodetector. We have proposed a model based on the PV and PC dual-mode operation of stacked two-color QWIPs and the effects of tunneling resonance with narrow energy width of photoexcited electrons in DBQWs, which can explain qualitatively the voltage-controlled tunable behavior of the photoresponse of the two-color infrared photodetector. (C) 1996 American Institute of Physics.
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multiquantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30μm). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10 GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
This paper reports on the design, fabrication, and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application. This paper mainly aims at two aspects. One is to improve the optical coupling between the laser and modulator; another is to increase the bandwidth of such devices by reducing the capacitance parameter of the modulator. The integrated devices exhibit high static and dynamic characteristics. Typical threshold current is 15mA,with some value as low as 8mA. Output power at 100mA is more than 10mW. The extinction characteristics,modulation bandwidth, and electrical return loss are measured. 3dB bandwidth more than 10GHz is monitored.
Resumo:
An improved butt coupling method is used to fabricate an electroabsorption modulator (EAM) monolithically integrated with a distributed feedback (DFB) laser. The obtained electroabsorption-modulated laser (EML) chip with the traditional shallow ridge exhibits very low threshold current of 12 mA, output power of more than 8 mW, and static extinction ratio of -7 dB at the applied bias voltage from 0.5 to -2.0 V.
Resumo:
A 1.3μm GaInNAs resonant cavity enhanced (RCE) photodetector (PD) has been grown by molecular beam epitaxy (MBE) monolithically on (100) GaAs substrate using a home-made ion-removed dc-plasma cell as nitrogen source. A transfer matrix method was used to optimize the device structure. The absorption region is composed of three GaInNAs quantum wells separated by GaAs layers. Devices were isolated by etching 130μm-diameter mesas and filling polyamide into grooves. The maximal quantum efficiency of the device is about 12% at 1.293μm. Full width at half maximum (FWHM) is 5.8nm and 3dB bandwidth is 304MHz. Dark current is 2 * 10~(-11) A at zero bias voltage. Further improvement of the performance of the RCE PD can be obtained by optimizing of the structure design and MBE growth conditions.
Resumo:
A GaInNAs/GaAs multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetector operating at 1.3 mum with the full-width at half-maximum of 5.5 nm was demonstrated. The GaInNAs RCE photodetector was grown by molecular-beam epitaxy using an ion-removed dc-plasma cell as nitrogen source. GaInNAs/GaAs MQW shows a strong exciton peak at room temperature that is very beneficial for applications in long-wavelength absorption devices. For a 100-mum diameter RCE photodetector, the dark current is 20 and 32 pA at biases of 0 and 6 V, respectively, and the breakdown voltage is -18 V. The measured 3-dB bandwidth is 308 MHz. The reasons resulting in the poor high speed property were analyzed. The tunable wavelength of 18 nm with the angle of incident light was observed.
Resumo:
The growth of GaInNAs/GaAs quantum wells (QW) was investigated by solid-source molecular beam epitaxy. N was introduced by a dc-active plasma source. The effect of growth conditions such as on the N incorporation and photoluminescence (PL) intensity of the QWs has been studied. The PL peak intensity decreased and the PL fun width at half maximum increased with increasing N concentrations. The highest N concentration of 2.6% in a GaInNAs/GaAs QW was obtained, and corresponding to a PL peak wavelength of 1.57 mum at 10K. Rapid thermal annealing at 850degreesC significantly improved the crystal quality of the QWs. An optimum annealing time of 5s at 850degreesC was obtained. A GaInNAs/GaAs SQW laser with the emitting wavelength of 1.2 mum and a high characteristic temperature of 115 K was achieved at room temperature.
Resumo:
In this paper we proposed a single ridge waveguide electroabsorption modulated distributed feedback laser (EML) for long-haul high-speed optical fiber communication system. This EML was successfully fabricated by two step metal organic vapor phase epitaxy (MOVPE) including selective area growth (SAG) and helium partially implantation. No obvious changes of the threshold current (< 0.2 mA), extinction ratio (< 0.1 dB), output power (< 0.2 dBm) and isolation resistance were achieved in the preliminary aging test. With 2.5 Gb/s NRZ modulation, no power penalty was observed after the optical signal was transmitted through 280 Km normal single mode fiber.
Resumo:
High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.