224 resultados para POLYCRYSTALLINE SILICON FILMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence from Er3+-implanted Si-in-SiN, films emitting efficiently visible light were investigated. A Stark structure in the Er3+ photoluminescence spectrum was observed at room temperature, which reveals more than one site symmetry for the Er3+-centers in the Si-in-SiN, matrix. The correlation between the visible photoluminescence from the silicon nanoparticles and the 1.54 mu m emission from the Er3+-centers was discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MnSb films were deposited on porous silicon substrates by physical vapor deposition (PVD) technique. Modulation effects due to the substrate on microstructure and magnetic properties of the MnSb film's were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of hysteresis loops. SEM images of the MnSb films indicate that net-like structures were obtained because of the special morphology of the substrates. The net-like MnSb films exhibit some novel magnetic properties different from the unpatterned referenced samples. For example, in the case of net-like morphology, the coercive field is as low as 60 Oe. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear optical properties of silicon nanocrystals (nc-Si) embedded in SiO2 films are investigated using time-resolved four-wave mixing technique with a femtosecond laser. the off-resonant third-order nonlinear susceptibility chi((3)) is observed to be 1.3 x 10(-10) esu at 800 nm. The relaxation time of the film is fast as short as 50 fs. The off-resonant nonlinearity is predominantly electronic in origin and enhanced due to quantum confinement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrays of vertically well-aligned ZnO nanorod-nanowall junctions have been synthesized on an undoped ZnO-coated silicon substrate by a carbothermal reduction and vapour phase transport method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the nanostructures are well-oriented with the c-axis perpendicular to the substrate. The room temperature photoluminescence (PL) spectrum of the as-prepared ZnO nanostructure reveals a dominant near-band-edge (NBE) emission peak and a weak deep level (DL) emission, which demonstrates its good optical properties. Temperature-dependent PL spectra show that both the intensity of NBE and DL emissions increased with decreasing temperature. The NBE emission at 3.27 eV is identified to originate from the radiative free exciton recombination. The possible growth mechanism of ZnO nanorod-nanowall junctions is also proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of In doped low-temperature (LT) AlGaN interlayer on the properties of GaN/Si(111) by MOCVD have been investigated. Using In doping LT-interlayer can decrease the stress sufficiently for avoiding crack formation in a thick (2.0 mu m) GaN layer. Significant improvement in the crystal and optical properties of GaN layer is also achieved. In doping is observed to reduce the stress in AlGaN interlayer measured by high-resolution X-ray diffraction (HRXRD). It can provide more compressive stress to counteract tensile stress and reduce crack density in subsequent GaN layer. Moreover, as a surfactant, indium is observed to cause an enhanced PL intensity and the narrowed linewidths of PL and XRD spectra for the LT-interlayer. Additionally, the crystal quality of GaN layer is found to be dependent on the growth parameters of underneath In-doped LT-AlGaN interlayer. The optimal parameters, such as TMIn flow rate, TMAl flow rates and thickness, are achieved to obtain nearly 2.0 mu m thick crack free GaN film with advanced optical and crystal properties. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The open circuit voltage (V-oc) of n-i-p type hydrogenated amorphous silicon (a-Si:H) solar cells has been examined by means of experimental and numerical modeling. The i- and p-layer limitations on V-oc are separated and the emphasis is to identify the impact of different kinds of p-layers. Hydrogenated protocrystalline, nanocrystalline and microcrystalline silicon p-layers were prepared and characterized using Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), optical transmittance and activation energy of dark-conductivity. The n-i-p a-Si:H solar cells incorporated with these p-layers were comparatively investigated, which demonstrated a wide variation of V-oc from 1.042 V to 0.369 V, under identical i- and n-layer conditions. It is found that the nanocrystalline silicon (nc-Si:H) p-layer with a certain nanocrystalline volume fraction leads to a higher V-oc. The optimum p-layer material for n-i-p type a-Si:H solar cells is not found at the onset of the transition between the amorphous to mixed phases, nor is it associated with a microcrystalline material with a large grain size and a high volume fraction of crystalline phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sb-doped and undoped ZnO thin films were deposited on Si (100) substrates by radio frequency (RF) magnetron sputtering. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that all the films had polycrystalline wurtzite structure and c-axis preferred orientation. Room temperature Hall measurements showed that the as-grown films were n-type and conducting (rho similar to 1-10 Omega cm). Annealing in a nitrogen ambient at 400 degrees C for 1 h made both samples highly resistive (rho > 10(3) Omega cm). Increasing the annealing temperature up to 800 C, the resistivity of the ttndoped ZnO film decreased gradually, but it increased for the Sb-doped ZnO film. In the end, the Sb-doped ZnO film annealed at 800 C became semi-insulating with a resistivity of 10(4)Omega cm. In addition, the effects of annealing treatment and Sb-doping on the structural and electrical properties are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er-Si-O (Er2SiO5) crystalline films are fabricated by the spin-coating and subsequent annealing process. The fraction of erbium is estimated to be 21.5 at% based on Rutherford backscattering measurement. X-ray diffraction pattern indicates that the Er-Si-O films are similar to Er2SiO5 compound in the crystal structure. The fine structure of room-temperature photoluminescence of Er3+-related transitions suggests that Er has a local environment similar to the Er-O-6 octahedron. Our preliminary results show that the intensity of 1.53 mu m emission is enhanced by a factor of seven after nitrogen plasma treatment by NH3 gas with subsequent post-annealing. The full-width at half-maximum of 1.53 pm emission peak increases from 7.5 to 12.9 nm compared with that of the untreated one. Nitrogen plasma treatment is assumed to tailor Er3+ local environment, increasing the oscillator strength of transitions and thus the excitation/emission cross-section. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The erbium-doped hydrogenated amorphous silicon suboxide films containing amorphous silicon clusters were prepared. The samples exhibited photoluminescence peaks at around 750 nm and 1.54 mum, which could be assigned to the electron-hole recombination in amorphous silicon clusters and the intra-4f transition in Er3+, respectively. Correlations between the intensities of these two photoluminescence peaks and oxidation and dehydrogenation of the films during annealing were studied. It was found that the oxidation is triggered by dehydrogenation of the films even at low annealing temperatures, which decisively changes the intensities of the two photoluminescence peaks. On the other hand, the increase of Er content in the erbium-doped hydrogenated amorphous silicon suboxide film will enhance Er3+ emission at 1.54 mum, while quench amorphous silicon cluster emission at 750 nm, such a competitive relationship, was also observed in the erbium-doped silicon nanocrystals embedded in SiO2 matrix. Moreover, we found that Er3+ emission is not sensitive to whether silicon clusters are crystalline or amorphous. The amorphous silicon clusters can be as sensitizer on Er3+ emission as that of silicon nanocrystals. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stoichiometric gadolinium oxide thin films have been grown on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Gadolinium oxide shares Gd2O3 structures although the ratio of gadolinium and oxygen in the film is about 2:1 and a lot of oxygen deficiencies exist. Photoluminescence (PL) measurements have been carried out within a temperature range of 5-300 K. The detailed characters of the PL emission integrated intensity, peak position, and peak width at different temperature were reported and an anomalous photoluminescence behavior was observed. The character of PL emission integrated intensity is similar to that of some other materials such as porous silicon and silicon nanocrystals in silicon dioxide. Four peaks relative to alpha band and beta band were observed also. Therefore we suggest that the nanoclusters with the oxygen deficiencies contribute to the PL emission and the model of singlet-triplet exchange splitting of exciton was employed for discussion. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic semiconductor GdxSi1-x was prepared by low-energy dual ion-beam epitaxy. GdxSi1-x shows excellent magnetic properties at room temperature. A high magnetic moment of 10 mu(B) per Gd atom is observed. The high atomic magnetic moment is interpreted as being a result of the RKKY mechanism. The indirect exchange interaction between ions is strong at large distances due to the low state density of the carriers in the magnetic semiconductor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zn1-xCdxO crystal thin films with different compositions were prepared on silicon and sapphire substrates by the dc reactive magnetron sputtering technique. X-ray diffraction measurements show that the Zn1-xCdxO films are of completely (002)-preferred orientation for x less than or equal to 0.6. For x = 0.8, the Elm is a mixture of ZnO hexagonal wurtzite crystals and CdO cubic crystals. For pure CdO, it is highly (200) preferential-oriented. Photoluminescence spectrum measurement shows that the Zn1-xCdxO (x = 0.2) thin film has a redshift of 0.14 eV from that of ZnO reported previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlations between Si nanocrystal (nc-Si) related photoluminescence (PL), Er3+ emission and nonradiative defects in the Er-doped SiO2 films containing nc-Si (SRSO) are studied. Upon 514.5 nm laser excitation the erbium-doped SRSO samples exhibit PL peaks at around 0.8 and 1.54 mum, which can be assigned to the electron-hole recombination in nc-Si and the intra-4f transition in Er3+, respectively. With increasing Er3+ content in the films, Er3+ emission becomes intense while the PL at 0.8 mum decreases, suggesting a strong coupling of nc-Si and Er 31 ions. Hydrogen plasma treatment for the samples improve the PL intensities of the 0.8 and 1.54 mum bands, indicating H passivation for the nonradiative defects existing in the samples. Further-more, from the effect of hydrogen treatment for the samples, we observe variation of the number of nonradiative defects with annealing temperatures. (C) 2003 Elsevier Science B.V. All rights reserved.