197 resultados para COULOMB GAS
Resumo:
The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.
Resumo:
The converse effects of spin photocurrent and current induced spin polarization are experimentally demonstrated in a two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured for the same system from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin-polarization, and spin-orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates a system with dominating structure inversion asymmetry.
Resumo:
Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.
Resumo:
We obtained the high mobility Of mu(2K) = 1.78 x 10(6) cm(2)/V . s in Si-doped GaAs/AlGaAs two-dimensional electron gas (2DEG) structures. After the sample was illuminated by a light-emitting diode in magnetic fields up to 6 T at T = 2K, we did observe the persistent photoconductivity effect and the electron density increased obviously. The electronic properties of 2DEG have been studied by Quantum-Hall-effect and Shubnikov-de Haas (SdH) oscillation measurements. We found that the electron concentrations of two subbands increase simultaneity with the increasing total electron concentration, and the electron mobility also increases obviously after being illuminated. At the same time, we also found that the electronic quantum lifetime becomes shorter, and a theoretical explunation is given through the widths of integral quantum Hall plateaus.
Resumo:
The transport property of a lateral two-dimensional paramagnetic diluted magnetic semiconductor electron gas under a spatially periodic magnetic field is investigated theoretically. We find that the electron Fermi velocity along the modulation direction is highly spin dependent even if the spin polarization of the carrier population is negligibly small. It turns out that this spin-polarized Fermi velocity alone can lead to a strong spin polarization of the current, which is still robust against the energy broadening effect induced by the impurity scattering. (c) 2006 American Institute of Physics.
Resumo:
We investigate theoretically the interplay between Zeeman splitting, Rashba spin-orbit interaction (RSOI), and Dresselhaus spin-orbit interaction (DSOI) and its influence on the magnetotransport property of two-dimensional electron gas (2DEG) at low temperature. Our theoretical results show that the nodes of the beating patterns of the magnetoresistivity rho(xx) for 2DEG with RSOI or DSOI alone depend sensitively on the total spin splitting induced by these three spin splitting mechanisms. It is interesting to find that the eigenstates in the presence of RSOI alone are connected with those in the presence of DSOI alone but with opposite Zeeman splitting by a time-reversal transformation. Consequently, the magnetoresistivities exhibit exactly the same oscillation patterns for these two cases. For strong RSOI or DSOI alone, the magneto-oscillation of rho(xx) shows two distinct periods. For 2DEG with both RSOI and DSOI, the beating patterns vanish for equal RSOI and DSOI strengths and vanishing Zeeman splitting. They will appear again, however, when Zeeman splitting or the difference between RSOI and DSOI strengths increases.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.
Resumo:
N-p-n Si/SiGe/Si heterostructure has been grown by a disilane (Si2H6) gas and Ge solid sources molecular beam epitaxy system using phosphine (PH3) and diborane (B2H6) as n- and p-type in situ doping sources, respectively. X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS) measurements show that the grown heterostructure has a good quality, the boron doping is confined to the SiGe base layer, and the Ge has a trapezoidal profile. Postgrowth P implantation was performed to prepare a good ohmic contact to the emitter. Heterojunction bipolar transistor (HBT) has been fabricated using the grown heterostructure and a common-emitter current gain of 75 and a cut-off frequency of 20 GHz at 300 K have been obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Three n-p-n Si/SiGe/Si heterostructures with different layer thickness and doping concentration have been grown by a home-made gas source molecular-beam epitaxy (GSMBE) system using phosphine (PH3) and diborane (B2H6) as n-and p-type in situ doping sources, respectively. Heterojunction bipolar transistors (HBTs) have been fabricated using these structures and a current gain of 40 at 300 K and 62 at 77 K have been obtained. The influence of thickness and doping concentration of the deposited layers on the current gain of the HBTs is discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
As reported by other authors, we have also observed that the Si growth rate decreases with increasing phosphine (PH3) flow rate in gas source-Si molecular beam epitaxy using phosphorous (P) as a n-type dopant. Why small quantity PH3 can affect Si growth rate? Up to now, the quantitative characterization of PH3 flow influence on Si growth rate is little known. In this letter, the PH, influence will be analyzed in detail and a model considering strong P surface segregation and its absorption of hydrogen will be proposed to characterize the effect. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.
Resumo:
In situ doping for growth of n-p-n Si/SiGe/Si heterojuction bipolar transistor (HBT) structural materials in Si gas source molecular beam epitaxy is investigated. We studied high n-type doping kinetics in Si growth using disilane and phosphine, and p-type doping in SiGe growth using disilane, soild-Ge, and diborane with an emphasis on the effect of Ge on B incorporation. Based on these results, in situ growth of n-p-n Si/SiGe/Si HBT device structure is demonstrated with designed structural and carrier profiles, as verified from characterizations by X-ray diffraction, and spreading resistance profiling analysis. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Electron transport through a double-quantum-dot structure with intradot and interdot Coulomb interactions is studied by a Green's function (GF) approach. The conductance is calculated by a Landauer-Buttiker formula for the interacting systems derived using the nonequilibrium Keldysh formalism and the GF's are solved by the equation-of-motion method. It is shown that the interdot-coupling dependence of the conductance peak splitting matches the recent experimental observations. Also, the breaking of the electron-hole symmetry is numerically demonstrated by the presence of the interdot repulsion. [S0163-1829(99)01640-9].
Resumo:
Uniform and high phosphorous doping has been demonstrated during Si growth by GSMBE using disilane and phosphine. The p-n diodes, which consist of a n-Si layer and a p-SiGe layer grown on Si substrate, show a normal I-V characteristic. A roughening transition during P-doped Si growth is found. Ex situ SEM results show that thinner film is specular. When the film becomes thicker, there are small pits of different sizes randomly distributed on the flat surface. The average pit size increases, the pit density decreases, and the size distribution is narrower for even thicker film. No extended defects are found at the substrate interface or in the epilayer. Possible causes for the morphological evolution are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.