1000 resultados para sphere braid group
Resumo:
Let n >= 3. We classify the finite groups which are realised as subgroups of the sphere braid group B(n)(S(2)). Such groups must be of cohomological period 2 or 4. Depending on the value of n, we show that the following are the maximal finite subgroups of B(n)(S(2)): Z(2(n-1)); the dicyclic groups of order 4n and 4(n - 2); the binary tetrahedral group T*; the binary octahedral group O*; and the binary icosahedral group I(*). We give geometric as well as some explicit algebraic constructions of these groups in B(n)(S(2)) and determine the number of conjugacy classes of such finite subgroups. We also reprove Murasugi`s classification of the torsion elements of B(n)(S(2)) and explain how the finite subgroups of B(n)(S(2)) are related to this classification, as well as to the lower central and derived series of B(n)(S(2)).
Resumo:
We define Picard cycles on each smooth three-sheeted Galois cover C of the Riemann sphere. The moduli space of all these algebraic curves is a nice Shimura surface, namely a symmetric quotient of the projective plane uniformized by the complex two-dimensional unit ball. We show that all Picard cycles on C form a simple orbit of the Picard modular group of Eisenstein numbers. The proof uses a special surface classification in connection with the uniformization of a classical Picard-Fuchs system. It yields an explicit symplectic representation of the braid groups (coloured or not) of four strings.
Resumo:
Motivated in part by the study of Fadell-Neuwirth short exact sequences, we determine the lower central and derived series for the braid groups of the finitely-punctured sphere. For n >= 1, the class of m-string braid groups B(m)(S(2)\{x(1), ... , x(n)}) of the n-punctured sphere includes the usual Artin braid groups B(m) (for n = 1), those of the annulus, which are Artin groups of type B (for n = 2), and affine Artin groups of type (C) over tilde (for n = 3). We first consider the case n = 1. Motivated by the study of almost periodic solutions of algebraic equations with almost periodic coefficients, Gorin and Lin calculated the commutator subgroup of the Artin braid groups. We extend their results, and show that the lower central series (respectively, derived series) of B(m) is completely determined for all m is an element of N (respectively, for all m not equal 4). In the exceptional case m = 4, we obtain some higher elements of the derived series and its quotients. When n >= 2, we prove that the lower central series (respectively, derived series) of B(m)(S(2)\{x(1), ... , x(n)}) is constant from the commutator subgroup onwards for all m >= 3 (respectively, m >= 5). The case m = 1 is that of the free group of rank n - 1. The case n = 2 is of particular interest notably when m = 2 also. In this case, the commutator subgroup is a free group of infinite rank. We then go on to show that B(2)(S(2)\{x(1), x(2)}) admits various interpretations, as the Baumslag-Solitar group BS(2, 2), or as a one-relator group with non-trivial centre for example. We conclude from this latter fact that B(2)(S(2)\{x(1), x(2)}) is residually nilpotent, and that from the commutator subgroup onwards, its lower central series coincides with that of the free product Z(2) * Z. Further, its lower central series quotients Gamma(i)/Gamma(i+1) are direct sums of copies of Z(2), the number of summands being determined explicitly. In the case m >= 3 and n = 2, we obtain a presentation of the derived subgroup, from which we deduce its Abelianization. Finally, in the case n = 3, we obtain partial results for the derived series, and we prove that the lower central series quotients Gamma(i)/Gamma(i+1) are 2-elementary finitely-generated groups.
Resumo:
Валентин В. Илиев - Авторът изучава някои хомоморфни образи G на групата на Артин на плитките върху n нишки в крайни симетрични групи. Получените пермутационни групи G са разширения на симетричната група върху n букви чрез подходяща абелева група. Разширенията G зависят от един целочислен параметър q ≥ 1 и се разцепват тогава и само тогава, когато 4 не дели q. В случая на нечетно q са намерени всички крайномерни неприводими представяния на G, а те от своя страна генерират безкрайна редица от неприводими представяния на групата на плитките.
Resumo:
In this paper, we determine the lower central and derived series for the braid groups of the projective plane. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is interesting in its own right. The n-string braid groups B(n)(RP(2)) of the projective plane RP(2) were originally studied by Van Buskirk during the 1960s. and are of particular interest due to the fact that they have torsion. The group B(1)(RP(2)) (resp. B(2)(RP(2))) is isomorphic to the cyclic group Z(2) of order 2 (resp. the generalised quaternion group of order 16) and hence their lower central and derived series are known. If n > 2, we first prove that the lower central series of B(n)(RP(2)) is constant from the commutator subgroup onwards. We observe that Gamma(2)(B(3)(RP(2))) is isomorphic to (F(3) X Q(8)) X Z(3), where F(k) denotes the free group of rank k, and Q(8) denotes the quaternion group of order 8, and that Gamma(2)(B(4)(RP(2))) is an extension of an index 2 subgroup K of P(4)(RP(2)) by Z(2) circle plus Z(2). As for the derived series of B(n)(RP(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group B(n)(RP(2)) being finite and soluble for n <= 2, the critical cases are n = 3, 4. We are able to determine completely the derived series of B(3)(RP(2)). The subgroups (B(3)(RP(2)))((1)), (B(3)(RP(2)))((2)) and (B(3)(RP(2)))((3)) are isomorphic respectively to (F(3) x Q(8)) x Z(3), F(3) X Q(8) and F(9) X Z(2), and we compute the derived series quotients of these groups. From (B(3)(RP(2)))((4)) onwards, the derived series of B(3)(RP(2)), as well as its successive derived series quotients, coincide with those of F(9). We analyse the derived series of B(4)(RP(2)) and its quotients up to (B(4)(RP(2)))((4)), and we show that (B(4)(RP(2)))((4)) is a semi-direct product of F(129) by F(17). Finally, we give a presentation of Gamma(2)(B(n)(RP(2))). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We prove that the symplectic group Sp(2n, Z) and the mapping class group Mod(S) of a compact surface S satisfy the R(infinity) property. We also show that B(n)(S), the full braid group on n-strings of a surface S, satisfies the R(infinity) property in the cases where S is either the compact disk D, or the sphere S(2). This means that for any automorphism phi of G, where G is one of the above groups, the number of twisted phi-conjugacy classes is infinite.
Resumo:
This thesis discusses subgroups of mapping class groups of particular surfaces. First, we study the Torelli group, that is, the subgroup of the mapping class group that acts trivially on the first homology. We investigate generators of the Torelli group, and we give an algorithm that factorizes elements of the Torelli group into products of particular generators. Furthermore, we investigate normal closures of powers of standard generators of the mapping class group of a punctured sphere. By using the Jones representation, we prove that in most cases these normal closures have infinite index in the mapping class group. We prove a similar result for the hyperelliptic mapping class group, that is, the group that consists of mapping classes that commute with a fixed hyperelliptic involution. As a corollary, we recover an older theorem of Coxeter (with 2 exceptional cases), which states that the normal closure of the m-th power of standard generators of the braid group has infinite index in the braid group. Finally, we study finite index subgroups of braid groups, namely, congruence subgroups of braid groups. We discuss presentations of these groups and we provide a topological interpretation of their generating sets.
Resumo:
We study the 1-parameter Wecken problem versus the restricted Wecken problem, for coincidence free pairs of maps between surfaces. For this we use properties of the function space between two surfaces and of the pure braid group on two strings of a surface. When the target surface is either the 2-sphere or the torus it is known that the two problems are the same. We classify most pairs of homotopy classes of maps according to the answer of the two problems are either the same or different when the target is either projective space or the Klein bottle. Some partial results are given for surfaces of negative Euler characteristic. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Über die Liniarität der Teichmüllerschen Modulgruppe des Torus mit zwei Punktierungen. In meiner Arbeit beschäftige ich mich mit Darstellungen der Teichmüllerschen Modulgruppe des Torus mit zwei Punktierungen. Mein Ansatz hierbei ist, die Teichmüllersche Modulgruppe in eine p-adische Liegruppe einzubetten. Sei nun F die von zwei Elementen erzeugte freie Gruppe und Aut(F) die Automorphismengruppe von F. Inhalt des ersten Kapitels ist es nun zu zeigen, daß folgende Aussagen äquivalent sind: - Die Teichmüllersche Modulgruppe des Torus mit zwei Punktierungen ist linear, - Aut(F)ist linear, - F besitzt eine p-Kongruenzstruktur, deren Folgen- glieder von Aut(F) festgehalten werden, also charak- teristisch sind. Im zweiten Kapitel wird unter anderem gezeigt, daß es eine Einbettung einer Untergruppe endlichen Indexes der Aut(F) in die Automorphismengruppe einer einfachen p-adischen Liegruppe gibt. Bisher ist unbekannt, ob die Buraudarstellung treu ist.In dieser Arbeit wird ein unendliches, lineares Gleichungssystem, dessen Lösungen gerade die Koeffizienten der Wörter des Kernes der Buraudarstellung sind, vorgestellt.Im dritten Kapitel wird mit den Methoden des 1.Kapitels gezeigt, daß der Torus mit zwei Punktierungen genau dann linear ist, wenn die Teichmüllersche Modulgruppe der Sphäre mit 5 Punktierungen es auch ist. Bekanntlich ist die 4. Braidgruppe linear. Nun ist aber die 4. Braidgruppe letztlich die Teichmüllersche Modulgruppe der abgeschlossenen Kreisscheibe mit 5 Punktierungen. Wenn man nun deren Randpunkte miteinander identifiziert und anschließend wegläßt, erhält man die 5-fach punktiereSphäre.Mit der eben beschriebenen Abbildung kann man zeigen, daß die Teichmüllersche Modulgruppe der fünffach punktierten Sphäre linear ist.
Resumo:
We study the Morton-Franks-Williams inequality for closures of simple braids (also known as positive permutation braids). This allows to prove, in a simple way, that the set of simple braids is an orthonormal basis for the inner product of the Hecke algebra of the braid group defined by Kálmán, who first obtained this result by using an interesting connection with Contact Topology. We also introduce a new technique to study the Homflypt polynomial for closures of positive braids, namely resolution trees whose leaves are simple braids. In terms of these simple resolution trees, we characterize closed positive braids for which the Morton-Franks-Williams inequality is strict. In particular, we determine explicitly the positive braid words on three strands whose closures have braid index three.
Resumo:
We classify the ( finite and infinite) virtually cyclic subgroups of the pure braid groups P(n)(RP(2)) of the projective plane. The maximal finite subgroups of P(n)(RP(2)) are isomorphic to the quaternion group of order 8 if n = 3, and to Z(4) if n >= 4. Further, for all n >= 3, the following groups are, up to isomorphism, the infinite virtually cyclic subgroups of P(n)(RP(2)): Z, Z(2) x Z and the amalgamated product Z(4)*(Z2)Z(4).
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) has been recently studied by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain a best ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
On the sphere decoding complexity of high-rate multigroup decodable STBCs in asymmetric MIMO systems
Resumo:
A space-time block code (STBC) is said to be multigroup decodable if the information symbols encoded by it can be partitioned into two or more groups such that each group of symbols can be maximum-likelihood (ML) decoded independently of the other symbol groups. In this paper, we show that the upper triangular matrix encountered during the sphere decoding of a linear dispersion STBC can be rank-deficient even when the rate of the code is less than the minimum of the number of transmit and receive antennas. We then show that all known families of high-rate (rate greater than 1) multigroup decodable codes have rank-deficient matrix even when the rate is less than the number of transmit and receive antennas, and this rank-deficiency problem arises only in asymmetric MIMO systems when the number of receive antennas is strictly less than the number of transmit antennas. Unlike the codes with full-rank matrix, the complexity of the sphere decoding-based ML decoder for STBCs with rank-deficient matrix is polynomial in the constellation size, and hence is high. We derive the ML sphere decoding complexity of most of the known high-rate multigroup decodable codes, and show that for each code, the complexity is a decreasing function of the number of receive antennas.
Resumo:
Decoding of linear space-time block codes (STBCs) with sphere-decoding (SD) is well known. A fast-version of the SD known as fast sphere decoding (FSD) was introduced by Biglieri, Hong and Viterbo. Viewing a linear STBC as a vector space spanned by its defining weight matrices over the real number field, we define a quadratic form (QF), called the Hurwitz-Radon QF (HRQF), on this vector space and give a QF interpretation of the FSD complexity of a linear STBC. It is shown that the FSD complexity is only a function of the weight matrices defining the code and their ordering, and not of the channel realization (even though the equivalent channel when SD is used depends on the channel realization) or the number of receive antennas. It is also shown that the FSD complexity is completely captured into a single matrix obtained from the HRQF. Moreover, for a given set of weight matrices, an algorithm to obtain an optimal ordering of them leading to the least FSD complexity is presented. The well known classes of low FSD complexity codes (multi-group decodable codes, fast decodable codes and fast group decodable codes) are presented in the framework of HRQF.
Resumo:
A series of terl-butylperoxide complexes of hafnium, Cp*2Hf(R)(OOCMe3) (Cp* = ((η5-C5Me5); R = Cl, H, CH3, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2, CH=CHCMe3, C6H5, meta-C6H3(CH2)2) and Cp*(η5-C5(CH3)4CH2CH2CH2)Hf(OOCMe3), has been synthesized. One example has been structurally characterized, Cp*2Hf(OOCMe3)CH2CH3 crystallizes in space group P21/c, with a = 19.890(7)Å, b = 8.746(4)Å, c = 17.532(6)Å, β = 124.987(24)°, V = 2498(2)Å3, Z = 4 and RF = 0.054 (2222 reflections, I > 0). Despite the coordinative unsaturation of the hafnium center, the terl-butylperoxide ligand is coordinated in a mono-dentate ligand. The mode of decomposition of these species is highly dependent on the substituent R. For R = H, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2 a clean first order conversion to Cp*2Hf(OCMe3)(OR) is observed (for R CH2CH3, ΔHǂ = 19.6 kcal•mol-1, ΔSǂ = -13 e.u.). These results are discussed in terms of a two step mechanism involving η2-coordination of the terl-butylperoxide ligand. Homolytic O-O bond cleavage is observed upon heating of Cp*2Hf(OOCMe3) R (R = C6H6, meta-C6H3(CH3)2). In the presence of excess 9,10-dihydroanthracene thermolysis of Cp*2Hf(OOCMe3)C6H6 cleanly affords Cp*2Hf(C6H6)OH and HOCMe3 (ΔHǂ = 22.6 kcal•mol-1, ΔSǂ = -9 e.u.). The O-O bond strength in these complexes is thus estimated to be 22 kcal•mol-1.
Cp*2Ta(CH2)H, Cp*2Ta(CHC6H5)H, Cp*2Ta(C6H4)H, Cp*2Ta(CH2=CH2)H and Cp*2Ta(CH2=CHMe)H react, presumably through Cp*2Ta-R intermediates, with H2O to give Cp*2Ta(O)H and alkane. Cp*2Ta(O)H was structurally characterized: space group P21/n, a= 13.073(3)Å, b = 19.337(4)Å, c = 16.002(3)Å, β = 108.66(2)°, V = 3832(1)Å3, Z = 8 and RF = 0.0672 (6730 reflections). Reaction of terlbutylhydroperoxide with these same starting materials ultimately yields Cp*2Ta(O)R and HOCMe3. Cp*2Ta(CH2=CHR)OH species are proposed as intermediates in the olefin hydride reactions. Cp*2Ta(O2)R species can be generated from the reaction of the same starting materials and O2. Lewis acids have been shown to promote oxygen insertion in these complexes.