931 resultados para singularly degenerate heteroclinic cycles
Resumo:
In this paper, by using the Poincare compactification in R(3) we make a global analysis of the Lorenz system, including the complete description of its dynamic behavior on the sphere at infinity. Combining analytical and numerical techniques we show that for the parameter value b = 0 the system presents an infinite set of singularly degenerate heteroclinic cycles, which consist of invariant sets formed by a line of equilibria together with heteroclinic orbits connecting two of the equilibria. The dynamical consequences related to the existence of such cycles are discussed. In particular a possibly new mechanism behind the creation of Lorenz-like chaotic attractors, consisting of the change in the stability index of the saddle at the origin as the parameter b crosses the null value, is proposed. Based on the knowledge of this mechanism we have numerically found chaotic attractors for the Lorenz system in the case of small b > 0, so nearby the singularly degenerate heteroclinic cycles.
Resumo:
In this paper by using the Poincare compactification in R(3) make a global analysis of the Rabinovich system(x) over dot = hy - v(1)x + yz, (y) over dot = hx - v(2)y - xz, (z) over dot = -v(3)z + xy,with (x, y, z) is an element of R(3) and ( h, v(1), v(2), v(3)) is an element of R(4). We give the complete description of its dynamics on the sphere at infinity. For ten sets of the parameter values the system has either first integrals or invariants. For these ten sets we provide the global phase portrait of the Rabinovich system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity). We prove that for convenient values of the parameters the system has two families of singularly degenerate heteroclinic cycles. Then changing slightly the parameters we numerically found a four wings butterfly shaped strange attractor.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A criterion of spatial chaos occurring in lattice dynamical systems-heteroclinic cycle-is discussed. It is proved that if the system has asymptotically stable heteroclinic cycle, then it has asymptotically stable homoclinic point which implies spatial chaos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we consider the dynamic consequences of the existence of infinite heteroclinic cycle in planar polynomial vector fields, which is a trajectory connecting two saddle points at infinity. It is stated that, although the saddles which form the cycle belong to infinity, for certain types of nonautonomous perturbations the perturbed system may present a complex dynamic behavior of the solutions in a finite part of the phase plane, due to the existence of tangencies and transversal intersections of their stable and unstable manifolds. This phenomenon might be called the chaos arising from infinity. The global study at infinity is made via the Poincare Compactification and the argument used to prove the statement is the Birkhoff-Smale Theorem. (c) 2004 WILEY-NCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.
Resumo:
Introduction The strange chaotic attractor (ACS) is an important subject in the nonlinear field. On the basis of the theory of transversal heteroclinic cycles, it is suggested that the strange attractor is the closure of the unstable manifolds of countable infinite hyperbolic periodic points. From this point of view some nonlinear phenomena are explained reasonably.
Resumo:
A theory of bifurcation equivalence for forced symmetry breaking bifurcation problems is developed. We classify (O(2), 1) problems of corank 2 of low codimension and discuss examples of bifurcation problems leading to such symmetry breaking.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). A graph is called 2-degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2-degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non - regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a'(G)<=Delta + 2, where Delta = Delta(G) denotes the maximum degree of the graph. We prove the conjecture for 2-degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2-degenerate graph with maximum degree ?, then a'(G)<=Delta + 1. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 68:1-27, 2011
Resumo:
In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
Resumo:
In this paper, we propose a model for the destruction of three-dimensional horseshoes via heterodimensional cycles. This model yields some new dynamical features. Among other things, it provides examples of homoclinic classes properly contained in other classes and it is a model of a new sort of heteroclinic bifurcations we call generating. © 2008 Cambridge University Press.