On the global dynamics of the Rabinovich system
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
11/07/2008
|
Resumo |
In this paper by using the Poincare compactification in R(3) make a global analysis of the Rabinovich system(x) over dot = hy - v(1)x + yz, (y) over dot = hx - v(2)y - xz, (z) over dot = -v(3)z + xy,with (x, y, z) is an element of R(3) and ( h, v(1), v(2), v(3)) is an element of R(4). We give the complete description of its dynamics on the sphere at infinity. For ten sets of the parameter values the system has either first integrals or invariants. For these ten sets we provide the global phase portrait of the Rabinovich system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity). We prove that for convenient values of the parameters the system has two families of singularly degenerate heteroclinic cycles. Then changing slightly the parameters we numerically found a four wings butterfly shaped strange attractor. |
Formato |
21 |
Identificador |
http://dx.doi.org/10.1088/1751-8113/41/27/275210 Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 41, n. 27, p. 21, 2008. 1751-8113 http://hdl.handle.net/11449/7119 10.1088/1751-8113/41/27/275210 WOS:000257167000013 |
Idioma(s) |
eng |
Publicador |
Iop Publishing Ltd |
Relação |
Journal of Physics A: Mathematical and Theoretical |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |