On the global dynamics of the Rabinovich system


Autoria(s): Llibre, Jaume; Messias, Marcelo; da Silva, Paulo R.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

11/07/2008

Resumo

In this paper by using the Poincare compactification in R(3) make a global analysis of the Rabinovich system(x) over dot = hy - v(1)x + yz, (y) over dot = hx - v(2)y - xz, (z) over dot = -v(3)z + xy,with (x, y, z) is an element of R(3) and ( h, v(1), v(2), v(3)) is an element of R(4). We give the complete description of its dynamics on the sphere at infinity. For ten sets of the parameter values the system has either first integrals or invariants. For these ten sets we provide the global phase portrait of the Rabinovich system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity). We prove that for convenient values of the parameters the system has two families of singularly degenerate heteroclinic cycles. Then changing slightly the parameters we numerically found a four wings butterfly shaped strange attractor.

Formato

21

Identificador

http://dx.doi.org/10.1088/1751-8113/41/27/275210

Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 41, n. 27, p. 21, 2008.

1751-8113

http://hdl.handle.net/11449/7119

10.1088/1751-8113/41/27/275210

WOS:000257167000013

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Journal of Physics A: Mathematical and Theoretical

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article