921 resultados para self-formed quantum dot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deterministic synthesis of self-organized quantum dot arrays for renewable energy, biomedical, and optoelectronic applications requires control over adatom capture zones, which are presently mapped using unphysical geometric tessellation. In contrast, the proposed kinetic mapping is based on simulated two-dimensional adatom fluxes in the array and includes the effects of nucleation, dissolution, coalescence, and process parameters such as surface temperature and deposition rate. This approach is generic and can be used to control the nanoarray development in various practical applications. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Confirmation of quantum dot lasing have been given by photoluminescence and electro-luminescence spectra. Energy levels of QD laser are distinctively resolved due to band filling effect, and the lasing energy of quantum dot laser is much lower than quantum well laser. The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally by deep level transient spectroscopy (DLTS). Such barrier has been predicted by previous theories and can be explained by the apexes appeared in the interface between InAs and GaAs caused by strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated properties of intraband absorption in In-x Ga1-xAs quantum dots (QDs) superlattice. Energy levels in conduction band in QDs were calculated for a cone-shaped quantum dot associated with coupling between QDs in the framework of the effective-mass envelope-function theory. Theoretical results demonstrated that energy levels in conduction band were greatly affected by the vertical coupling between quantum dots, which can be used to modify transition wavelength by adjusting the space layer thickness. Intraband transition is really sensitive to normal incidence and the absorption peak intensity is dependent on the polarization. A satisfying agreement is found between theoretical and experimental values. This result opens up prospects for the fabrication of QDs infrared detectors, which work at atmospheric windows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-confined Stark effects in InAs/GaAs self-assembled quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated in the presence of perpendicular and parallel electric field. In our calculation, the effect of finite offset, valence band mixing, and strain are all taken into account. The results show that the perpendicular electric field weakly affects the electron ground state and hole energy levels. The energy levels are affected strongly by the parallel electric field. For the electron, the energy difference between the ground state and the first excited state decreases as electric field increases. The optical transition energies have clear redshifts in electric field. The theoretical results agree well with the available experimental data. Our calculated results are useful for the application of quantum dots to photoelectric devices. (C) 2000 American Institute of Physics. [S0021-8979(00)11001-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology of self-assembled GeSi quantum dot grown on Si(113) by Si molecular beam epitaxy has been studied by transmission electron microscopy and atomic force microscopy. Photoluminescence from the as-grown sample and annealed sample was studied. The results were analyzed and explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative electroluminescence (EL) and photoluminescence (PL) measurements were performed on Si/Si0.6Ge0.4 self-assembly quantum dots (QDs) structures. The samples were grown pseudomorphically by molecular beam epitaxy, and PIN diodes for electroluminescence were fabricated. Assisted TEM pictures shows the SiGe self-assembly QDs are platelike. And it showed that the diameters of QDs are in range from 40nm to 140nm with the most in 120nm. Both EL and PL has a wide luminescence peak due to wide distribution of QDs dimensions. At low temperature (T=14K), EL peak has a red shift compared to the corresponding PL peak. Its full-width at half-maximum (FWHM) is about 97meV, a little smaller than that of corresponding PL peak. The reasons of position and FWHM changes of EL peak from QDs have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Confirmation of quantum dot lasing have been given by photoluminescence and electro-luminescence spectra. Energy levels of QD laser are distinctively resolved due to band filling effect, and the lasing energy of quantum dot laser is much lower than quantum well laser. The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally by deep level transient spectroscopy (DLTS). Such barrier has been predicted by previous theories and can be explained by the apexes appeared in the interface between InAs and GaAs caused by strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

City Univ Hong Kong

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lateral ordering of InGaAs quantum dots on the GaAs (001) surface has been achieved in earlier reports, resembling an anisotropic pattern. In this work, we present a method of breaking the anisotropy of ordered quantum dots (QDs) by changing the growth environment. We show experimentally that using As(2) molecules instead of As(4) as a background flux is efficient in controlling the diffusion of distant Ga adatoms to make it possible to produce isotropic ordering of InGaAs QDs over GaAs (001). The control of the lateral ordering of QDs under As(2) flux has enabled us to improve their optical properties. Our results are consistent with reported experimental and theoretical data for structure and diffusion on the GaAs surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the finite element approach, we systematically investigated the strain field distribution of conical-shaped InAs/GaAs self-organized quantum dot using the two-dimensional axis-symmetric model. The normal strain, the hydrostatic strain and the biaxial strain components along the center axis path of the quantum dots are analyzed. The dependence of these strain components on volume, height-over-base ratio and cap layer (covered by cap layer or uncovered quantum dot) is investigated for the quantum grown on the (001) substrate. The dependence of the carriers' confining potentials on the three circumstances discussed above is also calculated in the framework of eight-band k (.) p theory. The numerical results are in good agreement with the experimental data of published literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs QD dot-in-a-well (DWELL) structures were grown on GaAs substrate by MBE system, and heterojunction modulation-doped field effect transistor (MODFET) was fabricated. The optical properties of the samples show that the photoluminescence of InAs/GaAs self-assembled quantum dot (SAQD) is at 1.265 mu m at 300 K. The temperature-dependence of the abnormal redshift of InAs SAQD wavelength with the increasing temperature was observed, which is closely related with the inhomogeneous size distribution of the InAs quantum dot. According to the electrical measurement, high electric field current-voltage characteristic of the MODFET device were obtained. The embedded InAs QD of the samples can be regard as scattering centers to the vicinity of the channel electrons. The transport property of the electrons in GaAs channel will be modulated by the QD due to the Coulomb interaction. It has been proposed that a MODFET embedded with InAs QDs presents a novel type of field effect photon detector.