942 resultados para rational numbers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen tomado parcialmente de la revista.- El artículo forma parte de un monográfico dedicado a Psicología de las Matemáticas

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Consider the celebrated Lyness recurrence $x_{n+2}=(a+x_{n+1})/x_{n}$ with $a\in\Q$. First we prove that there exist initial conditions and values of $a$ for which it generates periodic sequences of rational numbers with prime periods $1,2,3,5,6,7,8,9,10$ or $12$ and that these are the only periods that rational sequences $\{x_n\}_n$ can have. It is known that if we restrict our attention to positive rational values of $a$ and positive rational initial conditions the only possible periods are $1,5$ and $9$. Moreover 1-periodic and 5-periodic sequences are easily obtained. We prove that for infinitely many positive values of $a,$ positive 9-period rational sequences occur. This last result is our main contribution and answers an open question left in previous works of Bastien \& Rogalski and Zeeman. We also prove that the level sets of the invariant associated to the Lyness map is a two-parameter family of elliptic curves that is a universal family of the elliptic curves with a point of order $n, n\ge5,$ including $n$ infinity. This fact implies that the Lyness map is a universal normal form for most birrational maps on elliptic curves.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present set of studies was to explore primary school children’s Spontaneous Focusing On quantitative Relations (SFOR) and its role in the development of rational number conceptual knowledge. The specific goals were to determine if it was possible to identify a spontaneous quantitative focusing tendency that indexes children’s tendency to recognize and utilize quantitative relations in non-explicitly mathematical situations and to determine if this tendency has an impact on the development of rational number conceptual knowledge in late primary school. To this end, we report on six original empirical studies that measure SFOR in children ages five to thirteen years and the development of rational number conceptual knowledge in ten- to thirteen-year-olds. SFOR measures were developed to determine if there are substantial differences in SFOR that are not explained by the ability to use quantitative relations. A measure of children’s conceptual knowledge of the magnitude representations of rational numbers and the density of rational numbers is utilized to capture the process of conceptual change with rational numbers in late primary school students. Finally, SFOR tendency was examined in relation to the development of rational number conceptual knowledge in these students. Study I concerned the first attempts to measure individual differences in children’s spontaneous recognition and use of quantitative relations in 86 Finnish children from the ages of five to seven years. Results revealed that there were substantial inter-individual differences in the spontaneous recognition and use of quantitative relations in these tasks. This was particularly true for the oldest group of participants, who were in grade one (roughly seven years old). However, the study did not control for ability to solve the tasks using quantitative relations, so it was not clear if these differences were due to ability or SFOR. Study II more deeply investigated the nature of the two tasks reported in Study I, through the use of a stimulated-recall procedure examining children’s verbalizations of how they interpreted the tasks. Results reveal that participants were able to verbalize reasoning about their quantitative relational responses, but not their responses based on exact number. Furthermore, participants’ non-mathematical responses revealed a variety of other aspects, beyond quantitative relations and exact number, which participants focused on in completing the tasks. These results suggest that exact number may be more easily perceived than quantitative relations. As well, these tasks were revealed to contain both mathematical and non-mathematical aspects which were interpreted by the participants as relevant. Study III investigated individual differences in SFOR 84 children, ages five to nine, from the US and is the first to report on the connection between SFOR and other mathematical abilities. The cross-sectional data revealed that there were individual differences in SFOR. Importantly, these differences were not entirely explained by the ability to solve the tasks using quantitative relations, suggesting that SFOR is partially independent from the ability to use quantitative relations. In other words, the lack of use of quantitative relations on the SFOR tasks was not solely due to participants being unable to solve the tasks using quantitative relations, but due to a lack of the spontaneous attention to the quantitative relations in the tasks. Furthermore, SFOR tendency was found to be related to arithmetic fluency among these participants. This is the first evidence to suggest that SFOR may be a partially distinct aspect of children’s existing mathematical competences. Study IV presented a follow-up study of the first graders who participated in Studies I and II, examining SFOR tendency as a predictor of their conceptual knowledge of fraction magnitudes in fourth grade. Results revealed that first graders’ SFOR tendency was a unique predictor of fraction conceptual knowledge in fourth grade, even after controlling for general mathematical skills. These results are the first to suggest that SFOR tendency may play a role in the development of rational number conceptual knowledge. Study V presents a longitudinal study of the development of 263 Finnish students’ rational number conceptual knowledge over a one year period. During this time participants completed a measure of conceptual knowledge of the magnitude representations and the density of rational numbers at three time points. First, a Latent Profile Analysis indicated that a four-class model, differentiating between those participants with high magnitude comparison and density knowledge, was the most appropriate. A Latent Transition Analysis reveal that few students display sustained conceptual change with density concepts, though conceptual change with magnitude representations is present in this group. Overall, this study indicated that there were severe deficiencies in conceptual knowledge of rational numbers, especially concepts of density. The longitudinal Study VI presented a synthesis of the previous studies in order to specifically detail the role of SFOR tendency in the development of rational number conceptual knowledge. Thus, the same participants from Study V completed a measure of SFOR, along with the rational number test, including a fourth time point. Results reveal that SFOR tendency was a predictor of rational number conceptual knowledge after two school years, even after taking into consideration prior rational number knowledge (through the use of residualized SFOR scores), arithmetic fluency, and non-verbal intelligence. Furthermore, those participants with higher-than-expected SFOR scores improved significantly more on magnitude representation and density concepts over the four time points. These results indicate that SFOR tendency is a strong predictor of rational number conceptual development in late primary school children. The results of the six studies reveal that within children’s existing mathematical competences there can be identified a spontaneous quantitative focusing tendency named spontaneous focusing on quantitative relations. Furthermore, this tendency is found to play a role in the development of rational number conceptual knowledge in primary school children. Results suggest that conceptual change with the magnitude representations and density of rational numbers is rare among this group of students. However, those children who are more likely to notice and use quantitative relations in situations that are not explicitly mathematical seem to have an advantage in the development of rational number conceptual knowledge. It may be that these students gain quantitative more and qualitatively better self-initiated deliberate practice with quantitative relations in everyday situations due to an increased SFOR tendency. This suggests that it may be important to promote this type of mathematical activity in teaching rational numbers. Furthermore, these results suggest that there may be a series of spontaneous quantitative focusing tendencies that have an impact on mathematical development throughout the learning trajectory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a new unified approach and an elementary proof of a very general theorem on the existence of a semicontinuous or continuous utility function representing a preference relation. A simple and interesting new proof of the famous Debreu Gap Lemma is given. In addition, we prove a new Gap Lemma for the rational numbers and derive some consequences. We also prove a theorem which characterizes the existence of upper semicontinuous utility functions on a preordered topological space which need not be second countable. This is a generalization of the classical theorem of Rader which only gives sufficient conditions for the existence of an upper semicontinuous utility function for second countable topological spaces. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nos últimos anos o conhecimento do professor tem vindo a ser reconhecido como um dos aspetos nucleares no, e para o, desenvolvimento do conhecimento matemático dos alunos. Atendendo a essa centralidade, a formação deverá focar-se onde é, efetivamente, necessária, de modo a potenciar um incremento do conhecimento dos alunos, pelo conhecimento (e práticas) dos professores. Sendo os números racionais um dos tópicos problemáticos para os alunos, é fundamental identificar quais as situações matematicamente (mais) críticas para os professores de modo que, pela formação facultada, possam deixar de o ser. Neste artigo, tendo por foco o conhecimento matemático do professor e as suas especificidades, discutimos alguns aspetos desse conhecimento de futuros professores sobre números racionais, em concreto o sentido de número racional, identificando as suas componentes mais problemáticas e equacionando alguns dos porquês em que se sustentam. Terminamos com algumas considerações sobre implicações para a formação de professores e responsabilidade dos seus formadores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório Final apresentado à Escola Superior de Educação de Lisboa para a obtenção de grau de mestre em Ensino do 1.º e 2.º Ciclo do Ensino Básico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do grau de mestre em Educação Matemática na Educação Pré-escolar e nos 1º e 2º Ciclos do Ensino Básico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo partiu do problema “Como promover aprendizagens da Matemática e do Estudo do Meio numa perspetiva interdisciplinar, explorando o mundo real?”. Neste sentido, tem como objetivos: selecionar recursos e atividades que se revelem motivadoras para os alunos; demonstrar a relevância da inter-relação de diferentes conceitos e a importância da sua ligação com as vivências dos alunos; ativar o envolvimento dos alunos para a aprendizagem da Matemática através do Estudo do meio e de situações do mundo real; estimular a perceção do aluno da presença da Matemática nos conteúdos de Estudo do Meio; fomentar a compreensão da relação dos conteúdos de Matemática e estudo do Meio. Com este propósito formularam-se as seguintes questões: (1) Que tipo de atividades se poderão proporcionar de forma a motivar os alunos para os conteúdos do Estudo do Meio e da Matemática? (2) De que forma a exploração das situações/conceções do quotidiano poderá promover o envolvimento dos alunos na aprendizagem da Matemática e do Estudo do Meio? (3) De que forma o Ensino Experimental das Ciências numa perspetiva interdisciplinar pode contribuir para desenvolver tanto as competências conceptuais (fatores do ambiente: temperatura e humidade/OTD/números racionais), como capacidades de pensamento crítico e tomada de decisão inerente? Tendo em vista os objetivos do estudo, desenvolveram-se, com uma turma do 2º ano de escolaridade, quatro situações formativas, que envolveram as disciplinas de Matemática e Estudo do Meio. O domínio de conteúdos preponderante na área de Estudo do Meio foi À descoberta do Ambiente Natural, enquanto na Matemática os domínios predominantes foram Organização e tratamento de dados e Números e operações. Foram realizadas diversas atividades experimentais, onde os alunos tiveram um papel ativo na construção dos seus conhecimentos. A investigação segue uma metodologia qualitativa, centrando-se num estudo de caso, onde se caracteriza uma experiência interdisciplinar que envolveu as disciplinas de Matemática e Estudo do Meio. Os dados foram recolhidos pela professora investigadora através de gravações de vídeo e áudio, fotografias, trabalhos dos alunos e de registos da professora investigadora. Os resultados demonstraram como os alunos mobilizaram e apropriaram os conteúdos de Matemática e Estudo do Meio. Os dados, através da análise de conteúdo, parecem iv sugerir que houve uma evolução no desempenho dos alunos a vários níveis, nomeadamente: no trabalho cooperativo, no envolvimento da tarefa, nas interações estabelecidas e na motivação para a aprendizagem da Matemática e Estudo do Meio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Ensino do 1º e 2º Ciclo do Ensino Básico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper shows that the sum of two binomial integrals, such as A ∫ x p (a + bx q)r dx + B ∫ x p (a + bx q)r dx, where A and B are real constants and p, q, r are rational numbers, can, in special cases, lead to elementary integrals, even if each by itself is not elementary. An example of the case considered is given by the integral ∫ x _____-___ 3 dx = 1/2 ∫ x-½ (x - 1)-⅓ dx - 6 √ x ³√(x - 1)4 = 1/3 ∫ x-½ (x - 1)-¾ dx On the rigth hand side of the last equality both integral are not elementary. But the use of integration by parts of one of them leads to the solution: ∫ x _____-___ 3 dx = x½ (x - 1)-⅓ + C. 6 √ x ³√(x - 1)4

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To an odd irreducible 2-dimensional complex linear representation of the absolute Galois group of the field Q of rational numbers, a modular form of weight 1 is associated (modulo Artin's conjecture on the L-series of the representation in the icosahedral case). In addition, linear liftings of 2-dimensional projective Galois representations are related to solutions of certain Galois embedding problems. In this paper we present some recent results on the existence of liftings of projective representations and on the explicit resolution of embedding problems associated to orthogonal Galois representations, and explain how these results can be used to construct modular forms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Notre recherche s’intéresse à la transformation des rapports aux nombres rationnels d’élèves de 1re secondaire présentant des difficultés d’apprentissage. Comme le montrent plusieurs recherches, le défi majeur auquel sont confrontés les enseignants, ainsi que les chercheurs, est de ne pas s’enliser dans le cercle vicieux d’une réduction des enjeux de l’apprentissage des nombres rationnels et des possibilités d’apprentissage de l’élève en difficultés d’apprentissage, cet élève n’ayant pas ainsi la chance de mettre à l’épreuve ses connaissances, d’oser s’engager dans une démarche de construction de connaissances et d’apprécier les effets de son engagement cognitif. Afin de relever ce défi, nous avons misé sur l’intégration harmonieuse de situations problèmes. Il nous a semblé que, dans une démarche d’acculturation, l’approche écologique soit tout indiquée pour penser une «dé-transposition/re-transposition didactique» (Antibi et Brousseau, 2000) et reconstruire une mémoire porteuse d’espoirs (Brousseau et Centeno, 1998). Notre recherche vise à: 1) caractériser la progression des démarches d’acculturation institutionnelle de l’enseignant, du chercheur et des élèves et leurs effets sur les processus d’élaboration et de gestion des situations d’enseignement; 2) préciser l’évolution des connaissances, des habitus et des rapports des élèves aux nombres rationnels. Notre intégration en classe, d’une durée de 6 mois, nous a permis d’apprécier les effets du processus d’acculturation. Nous avons noté des changements importants dans la topogénèse et la chronogénèse des savoirs (Mercier, 1995); alors qu’à notre entrée, l’enseignante adoptait la démarche suivante, soit effectuer un exposé des savoirs et des démarches que les élèves devaient consigner dans leurs notes de cours, afin de pouvoir par la suite s’y référer pour effectuer des exercices et résoudre des problèmes, elle modifiait progressivement cette démarche en proposant des problèmes qui pouvaient permettre aux élèves de coordonner diverses connaissances et de construire ainsi des savoirs auxquels ils pouvaient faire référence dans la construction de leurs notes de cours qu’ils pouvaient par la suite consulter pour effectuer divers exercices. Nous avons également pu apprécier les effets de l’intégration de diverses représentations des nombres rationnels sur l’avancée du temps didactique (Mercier, 1995) et la transformation des rapports et habitus des élèves aux nombres rationnels (Bourdieu, 1980). Ces changements se sont manifestés, entre autres, par : a) un investissement important lors de situations complexes; b) l’adoption de pratiques mathématiques plus attentives aux données numériques et aux relations entre ces données; c) l’apparition de conduites « inusitées » [ex. coordination de divers registres sémiotiques,exploitation de compositions additives/multiplicatives et d’écritures non conventionnelles]. De telles conduites sont similaires à celles observées dans plusieurs recherches effectuées auprès d’une population d’élèves qui ne présentent pas de difficultés d’apprentissage (Moss et Case, 1999). Les résultats de notre recherche soutiennent donc l’importance indéniable de considérer les élèves en difficultés comme étant mathématiquement compétents, comme le soulignent Empson (2003) et Houssart (2002). Il nous semble enfin important de souligner que le travail sur la représentation des nombres rationnels a constitué une niche particulièrement fertile, pour un travail fondamental sur les nombres rationnels, travail qui puisse permettre aux élèves de poursuivre plus harmonieusement leurs apprentissages, les nombres rationnels étant des objets de savoir incontournables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we champion Diophantus of Alexandria and Isabella Basmakova against Norbert Schappacher. In two publications ([46] and [47]) he puts forward inter alia two propositions: Questioning Diophantus' originality he considers affirmatively the possibility, that the Arithmetica are the joint work of a team of authors like Bourbaki. And he calls Basmakova's claim (in [5]), that Diophantus uses negative numbers, a "nonsense", reproaching her for her "thoughtlessness". First, we disprove Schappacher's Bourbaki thesis. Second, we investigate the semantic meaning and historical significance of Diophantus' keywords leipsis and mparxis. Next, we discuss Schappacher's epistemology of the history of mathematics and defend Basmakova's methods. Furthermore, we give 33 places where Diophantus uses negative quantities as intermediate results; they appear as differences a - b of positive rational numbers, the subtrahend b being bigger than the minuend a; they each represent the (negative) basis (pleyra) of a square number (tetragonos), which is afterwards computed by the formula (a - b)^2 = a^2 + b^2 - 2ab. Finally, we report how the topic "Diophantus and the negative numbers" has been dealt with by translators and commentators from Maximus Planudes onwards.