Um caso especial de integrais binômias
Data(s) |
01/01/1960
|
---|---|
Resumo |
The present paper shows that the sum of two binomial integrals, such as A ∫ x p (a + bx q)r dx + B ∫ x p (a + bx q)r dx, where A and B are real constants and p, q, r are rational numbers, can, in special cases, lead to elementary integrals, even if each by itself is not elementary. An example of the case considered is given by the integral ∫ x _____-___ 3 dx = 1/2 ∫ x-½ (x - 1)-⅓ dx - 6 √ x ³√(x - 1)4 = 1/3 ∫ x-½ (x - 1)-¾ dx On the rigth hand side of the last equality both integral are not elementary. But the use of integration by parts of one of them leads to the solution: ∫ x _____-___ 3 dx = x½ (x - 1)-⅓ + C. 6 √ x ³√(x - 1)4 |
Formato |
text/html |
Identificador |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0071-12761960000100002 |
Idioma(s) |
pt |
Publicador |
Universidade de São Paulo Escola Superior de Agricultura |
Fonte |
Anais da Escola Superior de Agricultura Luiz de Queiroz v.17 1960 |
Tipo |
journal article |