798 resultados para procedural and substantive knowledge
Resumo:
In this paper we briefly explore some of recommendations of the Review of the Australian Curriculum Final Report (Australian Government, 2014a), henceforth referred to as the Review, with reference to Modern History in the senior secondary Australian Curriculum. We also refer to the invited papers provided by history subject matter specialists, Professor Gregory Melleuish and Mr Clive Logan, published as the Review’s Supplementary Material (Australian Government, 2014b). In doing so, we note that both documents devote most of their attention to critiquing the Australian Curriculum: History in the compulsory years from Foundation (F) to Year 10.
Resumo:
The relevance of explicit instruction has been well documented in SLA research. Despite numerous positive findings, however, the issue continues to engage scholars worldwide. One issue that was largely neglected in previous empirical studies - and one that may be crucial for the effectiveness of explicit instruction - is the timing and integration of rules and practice. The present study investigated the extent to which grammar explanation (GE) before practice, grammar explanation during practice, and individual differences impact the acquisition of L2 declarative and procedural knowledge of two grammatical structures in Spanish. In this experiment, 128 English-speaking learners of Spanish were randomly assigned to four experimental treatments and completed comprehension-based task-essential practice for interpreting object-verb (OV) and ser/estar (SER) sentences in Spanish. Results confirmed the predicted importance of timing of GE: participants who received GE during practice were more likely to develop and retain their knowledge successfully. Results further revealed that the various combinations of rules and practice posed differential task demands on the learners and consequently drew on language aptitude and WM to a different extent. Since these correlations between individual differences and learning outcomes were the least observed in the conditions that received GE during practice, we argue that the suitable integration of rules and practice ameliorated task demands, reducing the burden on the learner, and accordingly mitigated the role of participants’ individual differences. Finally, some evidence also showed that the comprehension practice that participants received for the two structures was not sufficient for the formation of solid productive knowledge, but was more effective for the OV than for the SER construction.
Resumo:
The PMBOK Guide is one of the most influential publications concerning the knowledge of the project manangement. Moreover, the pervasion of this guide seems to be set to increase as the basis of accreditation - in conjunction with the increasing global trend toward obtaining project management professional status. However, despite the influence and strengthening profile of this guide, reports continue to be published that detail numerous project failures in a wide range of different industries. The PMBOK Guide comprises mainly declarative (know-what) and procedural (know-how) information. In this sense, the guide is largely normative and provides a very good example of the limitations of this approach as highlighted by proponents of a move to the genuine application of positibe theory in project management.----- The aim of this paper is to determine the applicability of the guide in Australia and to determine the extent to which project success can be attributed to the guide. Project Managers from a variety of organisations were surveyed. This postal survey yielded 48 replies. Descriptive statistics was used to assess the incidence and effectivieness of all the processes in the guide. The results indicate that there were no processes that could be considered as peripheral or as a candidate for elimination from the guide. More specifically, all the processes were identified as either a key routine process or a key selective process and positively related to the level of project success. However, the results also indicated that other major factors pertaining to causal knowledge (know-why) are, at least, equally important determinants of project success. It is concluded that declarative, procedural and causal knowledge are all valuable, and given the preponderance of the first two types of knowledge, there seems to be an urgent need to now ensure an equal quest for causal knowledge. In terms of developing causal knowledge, a good starting point would appear to be both positive theory from production and economics.
Resumo:
In the article, we have reviewed the means for visualization of syntax, semantics and source code for programming languages which support procedural and/or object-oriented paradigm. It is examined how the structure of the source code of the structural and object-oriented programming styles has influenced different approaches for their teaching. We maintain a thesis valid for the object-oriented programming paradigm, which claims that the activities for design and programming of classes are done by the same specialist, and the training of this specialist should include design as well as programming skills and knowledge for modeling of abstract data structures. We put the question how a high level of abstraction in the object-oriented paradigm should be presented in simple model in the design stage, so the complexity in the programming stage stay low and be easily learnable. We give answer to this question, by building models using the UML notation, as we take a concrete example from the teaching practice including programming techniques for inheritance and polymorphism.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
Jean Anyon’s (1981) “Social class and school knowledge” was a landmark work in North American educational research. It provided a richly detailed qualitative description of differential, social-class-based constructions of knowledge and epistemological stance. This essay situates Anyon’s work in two parallel traditions of critical educational research: the sociology of the curriculum and classroom interaction and discourse analysis. It argues for the renewed importance of both quantitative and qualitative research on social reproduction and equity in the current policy context.
Resumo:
This paper examines ‘What Have We Learned From Current Affairs This Week?’: a very successful weekly segment from the ABC program The Chaser’s War on Everything. It argues that through its intertextual satire, this regular segment acts not as a traditional news program would in presenting news updates on current events, but as a text which reflects on the way news is reported and how this, in turn, may shape public discourse. While the program has been highly controversial (enduring many a loud call for it to be pulled from air), this form of light entertainment can play an important public service by encouraging citizens to ‘read through’ (Gray, 2006: 104) commercial current affairs’ façade of ‘quality’ journalism.
Resumo:
Purpose – The purpose of this paper is to introduce the JKM 2010 annual special issue on knowledge based development (KBD) with reference to the multi-level analysis characteristic of the field. ----- ----- Design/methodology/approach – A description of the knowledge management approach at ESOC (European Space Operations Centre of the European Space Agency) is provided first. At the core of this approach is the breakdown of knowledge in individual technical domains followed by coverage analysis and criticality assessment. Such a framework becomes the reference for best knowledge acquisition, transfer and storage locus identification and subsequent knowledge management practices and guidelines. ----- ----- Findings – KBD provides an integrated framework to account for multidisciplinary analyses and multilevel practices in knowledge capital generation, distribution and utilization. ----- ----- Originality/value – The collection of papers included in the annual special issue on KBD provides a representative, composite view of the research topics and applications concerns in the field. Involving a number of disciplines and levels of analysis, issues ranging from the technological gatekeeper to global knowledge flows show the interdependence of KBD concepts and tools.
Resumo:
Maps are used to represent three-dimensional space and are integral to a range of everyday experiences. They are increasingly used in mathematics, being prominent both in school curricula and as a form of assessing students understanding of mathematics ideas. In order to successfully interpret maps, students need to be able to understand that maps: represent space, have their own perspective and scale, and their own set of symbols and texts. Despite the fact that maps have an increased prevalence in society and school, there is evidence to suggest that students have difficulty interpreting maps. This study investigated 43 primary-aged students’ (aged 9-12 years) verbal and gestural behaviours as they engaged with and solved map tasks. Within a multiliteracies framework that focuses on spatial, visual, linguistic, and gestural elements, the study investigated how students interpret map tasks. Specifically, the study sought to understand students’ skills and approaches used to solving map tasks and the gestural behaviours they utilised as they engaged with map tasks. The investigation was undertaken using the Knowledge Discovery in Data (KDD) design. The design of this study capitalised on existing research data to carry out a more detailed analysis of students’ interpretation of map tasks. Video data from an existing data set was reorganised according to two distinct episodes—Task Solution and Task Explanation—and analysed within the multiliteracies framework. Content Analysis was used with these data and through anticipatory data reduction techniques, patterns of behaviour were identified in relation to each specific map task by looking at task solution, task correctness and gesture use. The findings of this study revealed that students had a relatively sound understanding of general mapping knowledge such as identifying landmarks, using keys, compass points and coordinates. However, their understanding of mathematical concepts pertinent to map tasks including location, direction, and movement were less developed. Successful students were able to interpret the map tasks and apply relevant mathematical understanding to navigate the spatial demands of the map tasks while the unsuccessful students were only able to interpret and understand basic map conventions. In terms of their gesture use, the more difficult the task, the more likely students were to exhibit gestural behaviours to solve the task. The most common form of gestural behaviour was deictic, that is a pointing gesture. Deictic gestures not only aided the students capacity to explain how they solved the map tasks but they were also a tool which assisted them to navigate and monitor their spatial movements when solving the tasks. There were a number of implications for theory, learning and teaching, and test and curriculum design arising from the study. From a theoretical perspective, the findings of the study suggest that gesturing is an important element of multimodal engagement in mapping tasks. In terms of teaching and learning, implications include the need for students to utilise gesturing techniques when first faced with new or novel map tasks. As students become more proficient in solving such tasks, they should be encouraged to move beyond a reliance on such gesture use in order to progress to more sophisticated understandings of map tasks. Additionally, teachers need to provide students with opportunities to interpret and attend to multiple modes of information when interpreting map tasks.
Resumo:
This study presents the importance of a mentor’s (experienced teacher’s) personal attributes and pedagogical knowledge for developing a mentee’s (preservice teacher’s) teaching practices. Specifically, preservice teachers can have difficulties with behaviour management and must learn management strategies that help them to teach more effectively. This paper investigates how mentoring may facilitate the development of a mentee’s behaviour management strategies, in particular what personal attributes and pedagogical knowledge are used in this process.
Resumo:
One of the claims made for valuing the voices of marginalised students is that an insider perspective can be revealed on student issues and the ways in which education policies and systems impact on them. This chapter examines the ways in which participants in an Australian ‘students-as-researchers’ (SaR) project were able to raise knowledge of and address, to some extent, long-standing issues of racism in their schools. The SaR project has operated in more than thirty schools for periods of one to five years. Based on a participatory action research model, groups of secondary school students from schools serving socio-economically disadvantaged communities have worked with nominated teachers and university researchers to identify and research local issues relating to low academic outcomes and to develop and enact responses to the identified concerns. The voices of marginalised students quoted in this chapter illustrate that important insider knowledge can be revealed through the SaR process. Where student views have been acknowledged and acted on by the schools, significant change to student-teacher relationships and school culture has been achieved; the participants have been personally empowered and academic improvements across the schools have been noted. For such change to occur, however, a culture of mutual respect must be created in which teachers and school administrators value students’ views and are open to the possibility of unfavourable criticism.
Resumo:
Early-number is a rich fabric of interconnected ideas that is often misunderstood and thus taught in ways that do not lead to rich understanding. In this presentation, a visual language is used to describe the organisation of this domain of knowledge. This visual language is based upon Piaget’s notion of reflective abstraction (Dubinsky, 1991; Piaget, 1977/2001), and thus captures the epistemological associations that link the problems, concepts and representations of the domain. The constructs of this visual language are introduced and then applied to the early-number domain. The introduction to this visual language may prompt reflection upon its suitability and significance to the description of other domains of knowledge. Through such a process of analysis and description, the visual language may serve as a scaffold for enhancing pedagogical content knowledge and thus ultimately improve learning outcomes.